Solar Assisted Heat Pump System for Floor Heating

2011 ◽  
Vol 354-355 ◽  
pp. 828-832
Author(s):  
Xi Ming Zhang ◽  
Dong Hui Pan ◽  
Qing Bo Zhang

Solar assisted heat pump system(SAHP) has a wide and wonderful future for its excellent performance in energy saving and environment protection. Solar assisted heat pump system for floor heating is combined by solar assisted heat pump and floor heating. Presents the operating principal and key equipments and designs solar collector, thermal storage container, floor-coil radiator and so on, discusses the feasibility of introduction of a combined heating system for an energy building in Qingdao. On the base of this, two types of energy supply systems, the conventional system(gas heating and SAHP system, were set. Those two types of systems were evaluated regarding energy efficiency and environmental load. According to the results, compared with the conventional system, SAHP system was capable of reducing the primary energy consumption and CO2 emission, respectively 20% and 19.2%.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Akbar Alidadi Shamsabadi ◽  
Mehdi Jahangiri ◽  
Tayebeh Rezaei ◽  
Rouhollah Yadollahi Farsani ◽  
Ali Seryani ◽  
...  

Purpose In this study, a solar water heating system along with a seasonal thermal energy storage and a heat pump is designed for a villa with an area of 192 m2 in Tehran, the capital of Iran. Design/methodology/approach According to the material and the area of the residential space, the required heating of the building was calculated manually and then the thermodynamic analysis of the system and simulation was done in MATLAB software. Finally, regarding the waste of system, an efficient solar heating system, providing all the required energy to heat the building, was obtained. Findings The surface area of the solar collector is equal to 46 m2, the capacity of the tank is about 2,850 m3, insulation thickness stands at 55 cm and the coefficient of performance in required heat pump is accounted to about 9.02. Also, according to the assessments, the maximum level of received energy by the collector in this system occurs at a maximum temperature of 68ºC. Originality/value To the best of the authors’ knowledge, in the present work, for the first time, using mathematical modeling and analyzing of the first and second laws of thermodynamics, as well as using of computational code in MATLAB software environment, the solar-assisted ground source heat pump system is simulated in a residential unit located in Tehran.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2642 ◽  
Author(s):  
Yi Zhang ◽  
Guanmin Zhang ◽  
Aiqun Zhang ◽  
Yinhan Jin ◽  
Ruirui Ru ◽  
...  

Frost layer on the outdoor air heat exchanger surface in an air-source heat pump (ASHP) can decrease the system coefficient of performance (COP). Although the common defrosting and anti-frosting methods can improve the COP, the periodic defrosting not only reduces the system energy efficiency but also deteriorates the indoor environment. To solve these problems, it is necessary to clearly understand the frosting phenomenon and to achieve the system frost-free operation. This paper focused firstly on the analyses of frosting pathways and frosting maps. Followed by summarizing the characteristics of frost-free technologies. And then the performances of two types of frost-free ASHP (FFASHP) systems were reviewed, and the exergy and economic analysis of a FFASHP heating system were carried out. Finally, the existing problems related to the FFASHP technologies were proposed. Results show that the existing frosting maps need to be further improved. The FFASHP systems can not only achieve continuous frost-free operation but reduce operating cost. And the total COP of the FFASHP heating system is approximately 30–64% higher than that of the conventional ASHP system under the same frosting conditions. However, the investment cost of the FFASHP system increases, and its reliability also needs further field test in a wider frosting environment. In the future, combined with a new frosting map, the control strategy for the FFASHP system should be optimized.


1983 ◽  
Vol 105 (4) ◽  
pp. 446-453 ◽  
Author(s):  
D. J. Roeder ◽  
R. L. Reid

The series solar-assisted heat pump heating system with ground-coupled storage in The University of Tennessee’s TECH House I in Knoxville, Tennessee, has been modeled using TRNSYS/GROCS and was compared to the experimental performance for the 1980–81 heating season. The simulation results were within 8 percent of the experimental measurements. Both simulation and experimental results showed that ground coupling of thermal storage led to the elimination of electric resistance backup heat and a large reduction in the peak heating demand of the house. Results of a parametric study showed that, in general, a ground-coupled storage tank performs better than a storage tank placed outdoors in the Knoxville area. Application of a next generation heat pump resulted in the most significant impact on the seasonal performance factor. As expected, higher performance collectors and larger collector areas led to higher system seasonal performance. An economic analysis showed that the series solar heat pump system cannot economically compete with the stand-alone heat pump system in the Knoxville area.


2013 ◽  
Vol 411-414 ◽  
pp. 3084-3087
Author(s):  
Shu Zhang ◽  
Mao Yu Zheng

In this paper, the mathematical models of a GCHP system and a Ground-couple heat pump system with air-soil thermal storage (GCHPASTS) were developed, and the 20-year performances of the two systems were simulated in severe cold area of china, respectively. The results show that the soil temperature declines gradually during the operation of a GCHP system, which leads to the decrease of the coefficient of performance (COP) and the heating effect of the heat pump year after year. On the contrary, the balance of ground thermal load can be realized during the operation of a GCHPASTS system, and the heating performance of heat pump is stable and efficient for long time. So, it can be proved that a GCHP system cant be used for heating alone, while a GCHPASTS system is feasibility.


2013 ◽  
Vol 805-806 ◽  
pp. 486-491
Author(s):  
Yue Ren Wang ◽  
Yu Feng Jiang ◽  
Min Yu

Using Dest software simulation benchmark building the dynamic heat load, analyzing its distribution pattern, at the same timewe can also get heat pump units in the COP value is different under different working condition, then the soil source heat pump and central heating complementary heating system, undertake in soil source heat pump system design heat load, under theconditions of different proportion of the whole system operation energy consumption, initial investment analysis, we conclude thatthe soil source heat pump and central heating complementary heating systems of different energy matching optimization features,this provides a reference for practical engineering.


2021 ◽  
Vol 258 ◽  
pp. 09050
Author(s):  
Sergey Fedosov ◽  
Vadim Fedoseev ◽  
Svetlana Loginova

The subject of this study is to improve the design of the condenser for an air heat pump system in order to increase the heat exchange of the walls of the collectors (torus) and condenser pipelines with water for the heating circuit and to reduce the energy consumption for its operation. The emergence of the need to improve the existing models is due to the fact that the use in some cases of devices based on Venturi tubes and vortex tubes with reagent supply coaxially or tangentially does not give the desired positive effect. When their geometric parameters change, a decrease in the hydraulic resistance of the fluid and the volume of the working fluid leads to new configurations of the device. In our proposed device, the effect is achieved by reducing the total hydraulic resistance, increasing the efficiency of the heat pump system in a wide temperature range using condensers containing collectors (tori) and a container around the straight-pipe apparatus, where the straight-pipe apparatus together with the container represents a single structure of the “pipe in pipe”.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1420 ◽  
Author(s):  
Beungyong Park ◽  
Seong Ryong Ryu ◽  
Chang Heon Cheong

In this paper, a novel combined radiation-convection floor heating system is shown. This study uses practice-based learning and investigated the thermal performance of a combined radiation-convection floor heating system with a water heat pump system by evaluating the thermal environment and energy consumption in an experimental test. A new method that analyzed the thermal performance of four different controls was developed and applied. The results of the surface temperature distributions demonstrated that Mode 1, which uses only convection, had the lowest floor temperature and was thus considered inappropriate for occupants who sleep on the floor. By contrast, Modes 2, 3, and 4 showed high floor surface temperatures as hot water was supplied to the radiant heating panel. The predicted mean vote (PMV) results suggest that radiant floor heating is not appropriate for intermittent heating. In other words, occupants of single residences who return home at night will experience a long period of discomfort if they heat their room using floor heating. In this case, Mode 1, which is convection heating, and Modes 3 and 4, which represent mixed modes provide a more comfortable environment. The difference between this experimental study and previous research is that four different control modes for a combined radiation-convection system were evaluated based on the same location of the equipment in a laboratory. Furthermore, we studied the long-term real-scale thermal performance using panel and energy consumption.


2014 ◽  
Vol 521 ◽  
pp. 56-59
Author(s):  
Hui Xing Li ◽  
Peng Cheng ◽  
Guo Hui Feng ◽  
Ran Zhang

New energy development and utilization is an important approach to solve the problem of energy shortage,a new type of composite heating system is proposed in this study. It expounds the research ideas, the technical principle and operation plan of the system. Through a comparative analysis of the performance coefficient of composite heating system, reclaimed water source heat pump system and solar hot water heating system, it Comes to the conclusions that the composite heating system can not only reduce the operating cost but also improve the running performance of reclaimed water source heat pump and reduce the heat loss of solar hot water heating system.


2019 ◽  
Vol 111 ◽  
pp. 01064
Author(s):  
David Keogh ◽  
Mohammad Saffari ◽  
Mattia de Rosa ◽  
Donal P. Finn

Hybrid electric-gas heat pump systems are a possible retrofit option in older residential buildings. Older buildings can be challenging to retrofit and in this context hybrid systems can offer an intermediate route to decarbonisation of building heating energy demand. This is especially the case, where deep retrofit measures coupled with monovalent electric heat pump systems may not be feasible from an economic perspective. The aim of the current paper is to examine the suitability of a hybrid electric-gas heat pump system in comparison to electric heat pump systems as a retrofit measure for Irish housing stock and to benchmark both options against existing fossil fuel baseline systems. A detailed building energy model of a residential dwelling was developed and calibrated to within acceptable ASHRAE standards. An energy assessment was carried out which investigates each retrofit scenario. Key findings include: (i) both the all-electric and hybrid heat pump systems deliver primary energy savings compared to the fossil fuel baseline systems, (ii) hybrid systems attain higher primary energy savings compared to all-electric heat pump, where the hybrid system incorporates flexible delivery temperatures compared to a fixed delivery temperature tor the all-electric heat pump system.


Sign in / Sign up

Export Citation Format

Share Document