scholarly journals Semi-natural and intensive silvicultural systems for the boreal mixedwood forest

1996 ◽  
Vol 72 (3) ◽  
pp. 286-292 ◽  
Author(s):  
V. J. Lieffers ◽  
J. D. Stewart ◽  
R. B. Macmillan ◽  
D. Macpherson ◽  
K. Branter

Boreal mixedwood forests of aspen (Populus tremuloides) and white spruce (Picea glauca) are found on mesic sites in the western boreal forest. In the natural development of mixedwood stands, aspen is usually the first species to dominate the site. However, depending upon spruce seed sources and seedbeds, spruce can establish immediately after disturbance or in the next several decades. In most cases, spruce grow in the understory of deciduous species during its early development. If there are no spruce seed sources, aspen may be the sole tree species for a long period. In most circumstances, however, the longer-lived and taller white spruce eventually becomes the dominant species. If stands remain undisturbed for long periods, they will likely become uneven-aged mixtures of spruce and balsam fir (Abies balsamea). We propose silvicultural systems that will develop stands of a range of compositions, structures and value. As a starting point, we identify eight different mixed-wood compositions that might be identified in stand inventories, and propose various silvicultural treatments, including underplanting of white spruce, understory protection, shelterwood, and uneven-aged management. Fundamental changes in land tenure and silvicultural regulations, and improvements in estimation of growth and yield will be required before this range of management of mixed-woods can be implemented. Key words: aspen, white spruce, shelterwood, Populus tremuloides, Picea glauca, succession, ecosystem management

1999 ◽  
Vol 75 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Rongzhou Man ◽  
Victor J. Lieffers

In boreal mixedwood forests, aspen (Populus tremuloides) and white spruce (Picea glauca) commonly grow in mixture. These species may avoid competition through differential shade tolerance, physical separation of canopies, phenological differences, successional separation, and differences in soil resource utilization. Aspen may also be able to positively affect the growth of white spruce by improving litter decomposition and nutrient cycling rates, controlling grass and shrub competition, ameliorating environmental extremes, and reducing pest attack. These positive relationships likely make mixed-species stands more productive than pure stands of the same species. The evidence regarding the productivity of pure versus mixed aspen/white spruce stands in natural unmanaged forests is examined in this paper. Key words: Tree mixture; productivity; boreal mixedwoods; aspen; white spruce


2006 ◽  
Vol 36 (6) ◽  
pp. 1597-1609 ◽  
Author(s):  
Vernon S Peters ◽  
S Ellen Macdonald ◽  
Mark RT Dale

The timing of white spruce regeneration in aspen (Populus tremuloides Michx.) – white spruce (Picea glauca (Moench) Voss) boreal mixedwood stands is an important factor in stand development. We examined boreal mixedwood stands representing a 59-year period of time since fire and determined (1) whether and when a delayed regeneration period of white spruce occurred, (2) whether the relative abundance of initial (<20 years) versus delayed (≥20 years postfire) regeneration is related to seed availability at the time of the fire, and (3) what are the important regeneration substrates for initial versus delayed regeneration. Initial regeneration occurred primarily on mineral soil or humus, while delayed regeneration established primarily on logs and peaked 38–44 years after fire. Of the 20 stands investigated, seven were dominated by initial regeneration, six were dominated by delayed regeneration, and seven were even mixtures of both. The dominance of a site by initial or delayed regeneration could not be simply explained by burn timing relative to mast years or distance to seed source; our results suggested that fire severity and the competitive influence of initial regeneration on delayed regeneration were important at fine scales. Based on our results we describe several possible postfire successional pathways for boreal mixedwood forests.


2009 ◽  
Vol 85 (4) ◽  
pp. 631-638 ◽  
Author(s):  
Alison D Lennie ◽  
Simon M Landhäusser ◽  
Victor J Lieffers ◽  
Derek Sidders

Trembling aspen regeneration was studied in 2 types of partial harvest systems designed to harvest mature aspen but protect immature spruce and encourage natural aspen regeneration. Two partial harvest systems, where the residual aspen was either left in strips or was dispersed uniformly, were compared to traditional clearcuts. After the first and second year since harvest, aspen sucker density and growth was similar between the 2 partial harvests, but was much lower than in the clearcuts. However, in the partial cuts the regeneration density was very much dependent on the location relative to residual trees. The density of regeneration was inversely related to the basal area of residual aspen; however, sucker height was inversely related to the basal area of the residual spruce. Although there were adequate numbers of suckers after partial harvest, their viability and contribution to the long-term productivity of these mixedwood stands is not clear. Key words: silvicultural systems, forest management, residual canopy, white spruce, Populus tremuloides, Picea glauca, traffic


2002 ◽  
Vol 80 (4) ◽  
pp. 370-377 ◽  
Author(s):  
David F Greene ◽  
Christian Messier ◽  
Hugo Asselin ◽  
Marie-Josée Fortin

Mean annual seed production is assumed to be proportional to basal area for canopy trees, but it is not known if subcanopy trees produce fewer seeds than expected (given their size) because of low light availability. Ovulate cone production was examined for balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) in 1998 and for balsam fir in 2000 in western Quebec using subcanopy stems, near or far from forest edges, or (at one site) planted white spruce trees in fully open conditions. A very simple light model for transmission through mature trembling aspen (Populus tremuloides Michx.) crowns and through boles near forest edges was developed to account for the effect of light receipt on cone production. The enhanced light near forest edges (e.g., recent clearcuts) leads to about a doubling of cone production for subcanopy stems. The minimum subcanopy height for cone production far from an edge is about 10 m for balsam fir and 14 m for white spruce, with these minima decreasing near edges. By contrast, the minimum height for white spruce in a plantation (full light) is about 3 m. Accounting for light receipt leads to an increase in the explained variance.Key words: balsam fir, cone production, light model, regressions, subcanopy stems, white spruce.


2005 ◽  
Vol 35 (9) ◽  
pp. 2141-2150 ◽  
Author(s):  
EH (Ted) Hogg ◽  
Ross W Wein

The valleys of southwestern Yukon have a continental climate with average annual precipitation of <300 mm. In 1958, fires burned large areas of mature mixedwood forests dominated by white spruce (Picea glauca (Moench) Voss) in the valleys near Whitehorse. Since then, the burned areas have shown poor regeneration of spruce, but have been colonized by scattered clones of trembling aspen (Populus tremuloides Michx.) interspersed by grassland. The objective of the study was to examine the influence of climatic variation on forest growth and regeneration in the 1958 burn and the adjacent unburned forests. Tree-ring analysis was conducted on 50 aspen and 54 white spruce in 12 mature stands where these species were codominant, and on 147 regenerating aspen in the 1958 Takhini burn. The mature stands were uneven-aged and the patterns of growth variation for the aspen and spruce between 1944 and 2000 were similar. Growth of both species was most strongly related to variation in precipitation. The regenerating aspen had a wide age-class distribution (1959–2000) and their growth was also positively related to precipitation. The results indicate that these forests have been slow to regenerate after fire, and are vulnerable if the climate becomes drier under future global change.


2009 ◽  
Vol 39 (10) ◽  
pp. 1997-2004 ◽  
Author(s):  
Steve Cumming ◽  
Mariana Trindade ◽  
David Greene ◽  
S. Ellen Macdonald

In mixedwood boreal forests of western Canada, stands classified as “pure deciduous” by forest inventories sometimes contain a few large white spruce (Picea glauca (Moench) Voss) trees among or emerging from the canopy. These trees are important as regeneration seed sources and for habitat structure. Neither their abundance nor the characteristics of stands in which they occur have previously been quantified. Of 275 “pure aspen” stands in northeastern Alberta, 19.6% contained at least one such spruce detectable in an aerial photograph. These trees were found in stands across the range of sampled canopy heights, densities, age classes, and stand sizes and were often present in the interior of stands, not just on the perimeter. The frequency of 3 ha cells containing at least one spruce was related to (i) stand shape and size, (ii) amount of mature white spruce in adjacent forest, (iii) canopy height, (iv) stand age, and (v) stand density. We conclude that such trees are relatively abundant and widely distributed within the boreal mixedwood forests of Alberta. There is presently no provision to maintain this landscape element within managed forests. More information is needed to determine if or how they should be considered in forest management planning.


2007 ◽  
Vol 22 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Ryan J. Klos ◽  
G. Geoff Wang ◽  
Qing-Lai Dang ◽  
Ed W. East

Abstract Kozak's variable exponent taper equation was fitted for balsam poplar (Populus balsamifera L.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), black spruce (Picea mariana [Mill.] B.S.P.), and jack pine (Pinus banksiana Lamb.) in Manitoba. Stem taper variability between two ecozones (i.e., Boreal Shield and Boreal Plains) were tested using the F-test. Regional differences were observed for trembling aspen, white spruce, and jack pine, and for those species, separate ecozone-specific taper equations were developed. However, the gross total volume estimates using the ecozone-specific equations were different from those of the provincial equations by only 2 percent. Although the regional difference in stem form was marginal within a province, a difference of approximately 7 percent of gross total volume estimation was found when our provincial taper equations were compared with those developed in Alberta and Saskatchewan. These results suggest that stem form variation increases with spatial scale and that a single taper equation for each species may be sufficient for each province.


2014 ◽  
Vol 44 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Derek F. Sattler ◽  
Philip G. Comeau ◽  
Alexis Achim

Radial patterns of modulus of elasticity (MOE) were examined for white spruce (Picea glauca (Moench) Voss) and trembling aspen (Populus tremuoides Michx.) from 19 mature, uneven-aged stands in the boreal mixedwood region of northern Alberta, Canada. The main objectives were to (1) evaluate the relationship between pith-to-bark changes in MOE and cambial age or distance from pith; (2) develop species-specific models to predict pith-to-bark changes in MOE; and (3) to test the influences of radial growth, relative vertical height, and tree slenderness (tree height/DBH) on MOE. For both species, cambial age was selected as the best explanatory variable with which to build pith-to-bark models of MOE. For white spruce and trembling aspen, the final nonlinear mixed-effect models indicated that an augmented rate of increase in MOE occurred with increasing vertical position within the tree. For white spruce trees, radial growth and slenderness were found to positively influence maximum estimated MOE. For trembling aspen, there was no apparent effect of vertical position or radial growth on maximum MOE. The results shed light on potential drivers of radial patterns of MOE and will be useful in guiding silvicultural prescriptions.


Sign in / Sign up

Export Citation Format

Share Document