Magnetohydrodynamic Stagnation Point Flow with a Convective Surface Boundary Condition

2011 ◽  
Vol 66 (8-9) ◽  
pp. 495-499 ◽  
Author(s):  
Khamisah Jafar ◽  
Anuar Ishak ◽  
Roslinda Nazar

Abstract This study analyzes the steady laminar two-dimensional stagnation point flow and heat transfer of an incompressible viscous fluid impinging normal to a horizontal plate, with the bottom surface of the plate heated by convection from a hot fluid. A uniform magnetic field is applied in a direction normal to the flat plate, with a free stream velocity varying linearly with the distance from the stagnation point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically. The analysis includes the effects of the magnetic parameter, the Prandtl number, and the convective parameter on the heat transfer rate at the surface. Results showed that the heat transfer rate at the surface increases with increasing values of these quantities.

2018 ◽  
Vol 64 (4) ◽  
pp. 420 ◽  
Author(s):  
Abuzar Ghaffari ◽  
T. Javed ◽  
I. Mustafa

Non-linear thermal radiation effects on non-aligned stagnation point flow of Maxwell fluid have been carried out in the present investigation. It is observed that the non-linear radiation augments the temperature and heat transfer rate. This physical phenomenon is translated into a system of partial differential equations (PDEs). After useful transformation, these non-linear constitutive equations are transformed into a system of ordinary differential equations (ODEs) and interpreted numerically by means of parallel shooting technique. Effects of pertinent parameters on flow and heat transfer are elaborated through tables and graphs. It is observed that radiation and surface heating enhance the rate of heat transfer, however Prandtl number has inverse relation with thermal boundary layer thickness. It has been observed that for increasing Prandtl number, heat transfer rate enhances. The detailed discussion of heat transfer rate is also presented in this study. Flow pattern is judged through streamlines graphs. It is also observed that oblique stagnation point flow behaves like orthogonal stagnation point flow, when free stream velocity is very large as compared to stretching velocity.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
A. Malvandi ◽  
F. Hedayati ◽  
G. Domairry

This paper deals with the steady two-dimensional stagnation point flow of nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption. The employed model for nanofluid includes two-component four-equation nonhomogeneous equilibrium model that incorporates the effects of Brownian diffusion and thermophoresis simultaneously. The basic partial boundary layer equations have been reduced to a two-point boundary value problem via similarity variables and solved analytically via HAM. Effects of governing parameters such as heat generation/absorption λ, stretching parameter ε, thermophoresis , Lewis number Le, Brownian motion , and Prandtl number Pr on heat transfer and concentration rates are investigated. The obtained results indicate that in contrast with heat transfer rate, concentration rate is very sensitive to the abovementioned parameters. Also, in the case of heat generation , despite concentration rate, heat transfer rate decreases. Moreover, increasing in stretching parameter leads to a gentle rise in both heat transfer and concentration rates.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 912 ◽  
Author(s):  
Najiyah Safwa Khashi’ie ◽  
Norihan Md Arifin ◽  
Ioan Pop

The present work highlights the stagnation point flow with mixed convection induced by a Riga plate using a Cu-Al 2 O 3 /water hybrid nanofluid. The electromagnetohydrodynamic (EMHD) force generated from the Riga plate was influential in the heat transfer performance and applicable to delay the boundary layer separation. Similarity transformation was used to reduce the complexity of the governing model. MATLAB software, through the bvp4c function, was used to compute the resulting nonlinear ODEs. Pure forced convective flow has a distinctive solution, whereas two similarity solutions were attainable for the buoyancy assisting and opposing flows. The first solution was validated as the physical solution through the analysis of flow stability. The accretion of copper volumetric concentration inflated the heat transfer rate for the aiding and opposing flows. The heat transfer rate increased approximately up to an average of 10.216% when the copper volumetric concentration increased from 0.005 ( 0.5 % ) to 0.03 ( 3 % ) .


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110240
Author(s):  
Rehan Ali Shah ◽  
Hidayat Ullah ◽  
Muhammad Sohail Khan ◽  
Aamir Khan

This paper investigates the enhanced viscous behavior and heat transfer phenomenon of an unsteady two di-mensional, incompressible ionic-nano-liquid squeezing flow between two infinite parallel concentric cylinders. To analyze heat transfer ability, three different type nanoparticles such as Copper, Aluminum [Formula: see text], and Titanium oxide [Formula: see text] of volume fraction ranging from 0.1 to 0.7 nm, are added to the ionic liquid in turns. The Brinkman model of viscosity and Maxwell-Garnets model of thermal conductivity for nano particles are adopted. Further, Heat source [Formula: see text], is applied between the concentric cylinders. The physical phenomenon is transformed into a system of partial differential equations by modified Navier-Stokes equation, Poisson equation, Nernst-Plank equation, and energy equation. The system of nonlinear partial differential equations, is converted to a system of coupled ordinary differential equations by opting suitable transformations. Solution of the system of coupled ordinary differential equations is carried out by parametric continuation (PC) and BVP4c matlab based numerical methods. Effects of squeeze number ( S), volume fraction [Formula: see text], Prandtle number (Pr), Schmidt number [Formula: see text], and heat source [Formula: see text] on nano-ionicliquid flow, ions concentration distribution, heat transfer rate and other physical quantities of interest are tabulated, graphed, and discussed. It is found that [Formula: see text] and Cu as nanosolid, show almost the same enhancement in heat transfer rate for Pr = 0.2, 0.4, 0.6.


Author(s):  
Ioan Pop ◽  
Kohi Naganthran ◽  
Roslinda Nazar

Purpose – The purpose of this paper is to analyse numerically the steady stagnation-point flow of a viscous and incompressible fluid over continuously non-aligned stretching or shrinking surface in its own plane in a water-based nanofluid which contains three different types of nanoparticles, namely, Cu, Al2O3 and TiO2. Design/methodology/approach – Similarity transformation is used to convert the system of boundary layer equations which are in the form of partial differential equations into a system of ordinary differential equations. The system of similarity governing equations is then reduced to a system of first-order differential equations and solved numerically using the bvp4c function in Matlab software. Findings – Unique solution exists when the surface is stretched and dual solutions exist as the surface shrunk. For the dual solutions, stability analysis has revealed that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable. The effect of non-alignment is huge for the shrinking surface which is in contrast with the stretching surface. Practical implications – The results obtained can be used to explain the characteristics and applications of nanofluids, which are widely used as coolants, lubricants, heat exchangers and micro-channel heat sinks. This problem also applies to some situations such as materials which are manufactured by extrusion, production of glass-fibre and shrinking balloon. In this kind of circumstance, the rate of cooling and the stretching/shrinking process play an important role in moulding the final product according to preferable features. Originality/value – The present results are original and new for the study of fluid flow and heat transfer over a stretching/shrinking surface for the problem considered by Wang (2008) in a viscous fluid and extends to nanofluid by using the Tiwari and Das (2007) model.


2011 ◽  
Vol 66 (12) ◽  
pp. 705-711 ◽  
Author(s):  
Sin Wei Wong ◽  
Abu Omar Awang ◽  
Anuar Ishak

The steady two-dimensional stagnation-point flow of an incompressible viscous fluid over an exponentially shrinking/stretching sheet is studied. The shrinking/stretching velocity, the free stream velocity, and the surface temperature are assumed to vary in a power-law form with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations before being solved numerically by a finite difference scheme known as the Keller-box method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. It is found that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique.


2020 ◽  
Vol 30 (10) ◽  
pp. 4583-4606 ◽  
Author(s):  
Najiyah Safwa Khashi’ie ◽  
Norihan Md Arifin ◽  
Ioan Pop ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin ◽  
...  

Purpose This paper aims to scrutinize the analysis of non-axisymmetric Homann stagnation point flow and heat transfer of hybrid Cu-Al2O3/water nanofluid over a stretching/shrinking flat plate. Design/methodology/approach The similarity transformation which fulfils the continuity equation is opted to transform the coupled momentum and energy equations into the nonlinear ordinary differential equations. Numerical solutions which are elucidated in the tables and graphs are obtained using the bvp4c solver. Findings Non-unique solutions (first and second) are feasible for both stretching and shrinking cases within the specific values of the parameters. First solution is the physical/real solution based on the execution of stability analysis. An upsurge of the ratio of the ambient fluid strain rate to the plate strain rate can delay the boundary layer separation, whereas a boost of the ratio of the ambient fluid shear rate to the plate strain rate only accelerates the separation of boundary layer. The heat transfer rate of hybrid nanofluid is greater for the stretching case than the shrinking case. However, for the shrinking case, the heat transfer rate intensifies with the increment of the copper (Cu) nanoparticles volume fraction, whereas a contrary result is found for the stretching case. Originality/value The present numerical results are original and new. It can contribute to other researchers on electing the relevant parameters to optimize the heat transfer process in the modern industry, and the right parameters to generate non-unique solution so that no misjudgment on flow and heat transfer features.


2020 ◽  
Vol 31 (09) ◽  
pp. 2050125
Author(s):  
Ahmed A. Afify ◽  
Nasser S. Elgazery

MHD viscoelastic (Walters’-B) fluid flow close to the stagnation point region along an extending plate with the changeable fluid properties’ influences has been debated. Heat transfer’s features are scrutinized via Cattaneo–Christov (CC) theory. The mathematical model for the physical problem is tackled numerically via Chebyshev pseudospectral (CPS) technique. The existing outcomes are supported by recent research and have acquired a suitable agreement. The numerical outcomes reveal that temperature fields are more pronounced for Fourier’s law case. Further, the opposite behavior is noticed with the heat transfer rate. Higher values of the conjugate parameter result in an increment of the heat transfer rate and temperature field. Fluid flow’s features, as well as physical quantities, are substantially varied via variable fluid properties.


2019 ◽  
Vol 29 (8) ◽  
pp. 2588-2605 ◽  
Author(s):  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
Ioan Pop

Purpose The purpose of this paper is to theoretically investigate the unsteady separated stagnation-point flow and heat transfer past an impermeable stretching/shrinking sheet in a copper (Cu)-water nanofluid using the mathematical nanofluid model proposed by Tiwari and Das. Design/methodology/approach A similarity transformation is used to reduce the governing partial differential equations to a set of nonlinear ordinary (similarity) differential equations which are then solved numerically using the function bvp4c from Matlab for different values of the governing parameters. Findings It is found that the solution is unique for stretching case; however, multiple (dual) solutions exist for the shrinking case. Originality/value The authors believe that all numerical results are new and original, and have not been published elsewhere.


2019 ◽  
Vol 30 (3) ◽  
pp. 1345-1364 ◽  
Author(s):  
Mohamad Mustaqim Junoh ◽  
Fadzilah Md Ali ◽  
Norihan Md Arifin ◽  
Norfifah Bachok ◽  
Ioan Pop

Purpose The purpose of this paper is to investigate the steady magnetohydrodynamics (MHD) boundary layer stagnation-point flow of an incompressible, viscous and electrically conducting fluid past a stretching/shrinking sheet with the effect of induced magnetic field. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations via the similarity transformations before they are solved numerically using the “bvp4c” function in MATLAB. Findings It is found that there exist non-unique solutions, namely, dual solutions for a certain range of the stretching/shrinking parameters. The results from the stability analysis showed that the first solution (upper branch) is stable and valid physically, while the second solution (lower branch) is unstable. Practical implications This problem is important in the heat transfer field such as electronic cooling, engine cooling, generator cooling, welding, nuclear system cooling, lubrication, thermal storage, solar heating, cooling and heating in buildings, biomedical, drug reduction, heat pipe, space aircrafts and ships with better efficiency than that of nanofluids applicability. The results obtained are very useful for researchers to determine which solution is physically stable, whereby, mathematically more than one solution exist. Originality/value The present results are new and original for the problem of MHD stagnation-point flow over a stretching/shrinking sheet in a hybrid nanofluid, with the effect of induced magnetic field.


Sign in / Sign up

Export Citation Format

Share Document