scholarly journals Parametric analysis of the heat transfer behavior of the nano-particle ionic-liquid flow between concentric cylinders

2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110240
Author(s):  
Rehan Ali Shah ◽  
Hidayat Ullah ◽  
Muhammad Sohail Khan ◽  
Aamir Khan

This paper investigates the enhanced viscous behavior and heat transfer phenomenon of an unsteady two di-mensional, incompressible ionic-nano-liquid squeezing flow between two infinite parallel concentric cylinders. To analyze heat transfer ability, three different type nanoparticles such as Copper, Aluminum [Formula: see text], and Titanium oxide [Formula: see text] of volume fraction ranging from 0.1 to 0.7 nm, are added to the ionic liquid in turns. The Brinkman model of viscosity and Maxwell-Garnets model of thermal conductivity for nano particles are adopted. Further, Heat source [Formula: see text], is applied between the concentric cylinders. The physical phenomenon is transformed into a system of partial differential equations by modified Navier-Stokes equation, Poisson equation, Nernst-Plank equation, and energy equation. The system of nonlinear partial differential equations, is converted to a system of coupled ordinary differential equations by opting suitable transformations. Solution of the system of coupled ordinary differential equations is carried out by parametric continuation (PC) and BVP4c matlab based numerical methods. Effects of squeeze number ( S), volume fraction [Formula: see text], Prandtle number (Pr), Schmidt number [Formula: see text], and heat source [Formula: see text] on nano-ionicliquid flow, ions concentration distribution, heat transfer rate and other physical quantities of interest are tabulated, graphed, and discussed. It is found that [Formula: see text] and Cu as nanosolid, show almost the same enhancement in heat transfer rate for Pr = 0.2, 0.4, 0.6.

2018 ◽  
Vol 7 (1) ◽  
pp. 1-16 ◽  
Author(s):  
M. Muthtamilselvan ◽  
S. Sureshkumar

Abstract The present study is proposed to investigate the effects of various lengths and different locations of the heater on the left sidewall in a square lid-driven porous cavity filled with nanofluid. A higher temperature is maintained on the left wall where three different lengths and three different locations of the heat source are considered for the analysis. The right wall is kept at a lower temperature while the top and bottom walls, and the remaining portions of the heated wall are adiabatic. The governing equations are solved by finite volume method. The results show that among the different lengths of the heat source, an enhancement in the heat transfer rate is observed only for the length LH = 1/3 of the heat source. In the case of location of the heat source, the overall heat transfer rate is increased when the heat source is located at the top of the hot wall. For Ri = 1 and 0.01, a better heat transfer rate is obtained when the heat source is placed at the top of the hot wall whereas for Ri = 100, it occurs when the heating portion is at the middle of the hot wall. As the solid volume fraction increases, the viscosity of the fluid is increased, which causes a reduction in the flow intensity. An addition of nanoparticles in the base fluid enhances the overall heat transfer rate significantly for all Da considered. The permeability of the porous medium plays a major role in convection of nanofluid than porosity. A high heat transfer rate (57.26%) is attained for Da = 10−1 and χ = 0.06.


2021 ◽  
Vol 13 (11) ◽  
pp. 168781402110606
Author(s):  
Djamila Benyoucef ◽  
Samira Noui ◽  
Afaf Djaraoui

Numerically, natural convection heat transfer of nanofluids in a two-dimensional tilt square enclosure was investigated, with a partial heat source embedded on the bottom wall subject to a fixed heat flux. The remaining portions of the horizontal bottom wall are assumed to be adiabatic, while the upper horizontal wall and the vertical ones are supposed to be at a relatively low temperature. Using the finite volume method and the SIMPLER algorithm, the governing equations have been discretized and solved. Simulations have been carried out for more than one nanoparticle and base fluid, a range of Rayleigh numbers ([Formula: see text] Ra [Formula: see text]), various values of heat source length and location (0.2 [Formula: see text]  B [Formula: see text] 0.8 and 0.2 [Formula: see text]  D [Formula: see text] 0.5, respectively), solid volume fraction ([Formula: see text]) as well as tilt angle ([Formula: see text]). The results indicate that the heat transfer performance increases by adding nanoparticles into the base fluid. An optimum solid volume fraction raises and reduces the heat transfer rate and maximum temperature of the surface heat source. respectively. Moreover, the results show a significant impact of the tilt angle on the flow, temperature patterns, and the heat transfer rate with a specific tilt angle depending to the pertinent parameters.


2021 ◽  
Vol 11 (17) ◽  
pp. 8199
Author(s):  
Mohamad Nizam Othman ◽  
Alias Jedi ◽  
Nor Ashikin Abu Bakar

In nanotechnology research, nanofluid technology contributes many applications to engineering applications and industry, such as power generation, solar collection, heat exchangers for cooling, and many more. However, there are still a few constraints in terms of heat transfer enhancement, although nanofluid properties show the best heat transfer rate compared with conventional fluids. Thus, this study was conducted for the purpose of investigating the behaviors of flow and heat transfer of hybrid nanofluid with carbon nanotubes (CNTs) on a permeable exponentially shrinking surface, as well as investigating the effects of a magnetic field and heat source/sink. This study was conducted by developing a mathematical model, which was the Tiwari–Das model for momentum and energy equations, and then transforming the model’s partial differential equations (PDEs) to ordinary differential equations (ODEs) using a similarity solution. Next, these equations were solved numerically using the MATLAB bvp4c boundary value problem solver. The authors particularly explored these behaviors with a few variations. Based on the results obtained, it was found that dual solutions exist in a specific range of the shrinking case, and that the critical point also exists in a range of −1.5 < < −1 with different parameters. For the heat source/sink effect, the Nusselt number was higher when heat sink case ε < 0, whereas it decreased when the heat source case ε > 0. Therefore, this study deduced that the heat transfer rate of hybrid nanofluid (CNTs/Cu–water) is better than regular nanofluid (CNT–water) and conventional fluid (water). The present study took into consideration the problem of MHD flow and heat transfer analysis of a hybrid nanofluid towards an exponentially shrinking surface with the presence of heat source/sink and thermal radiation effects. The authors show that dual solutions exist within a specific range of values due to the shrinking case. The current work is predicted to have numerous benefits in equivalent real-world systems.


Author(s):  
K Govindarajulu ◽  
A Subramanyam Reddy

The current exploration deals with the third grade hydromagnetic pulsating flow of blood-gold nanofluid in a channel with the presence of Ohmic heating, viscous dissipation and radiative heat. In the present analysis, blood (base fluid) is considered as third-grade fluid and gold (Au) as nanoparticle. This investigation is useful in the fields of food processing system, pressure surges (pulsatile flow application), biomedical engineering, nano drug delivery, radiotherapy, and cancer therapeutic (nanofluid application). Perturbation method is employed to transform the set of governing partial differential equations (PDEs) into the ordinary differential equations (ODEs) and then solved by employing the fourth order Runge-Kutta method with the aid of the shooting technique. The impacts of emerging dimensionless parameters of velocity, temperature, and heat transfer rate of blood-Au nanofluid are analysed via pictorial outcomes in detail. The obtained results depict that the improvement in viscous dissipation and heat source enhanced the temperature of third grade nanofluid. The velocity and temperature of the nanofluid are declining functions with the enhancement of frequency parameter, material parameter, and non-Newtonian parameter respectively. Intensifying the volume fraction of nanoparticle dwindles the velocity and temperature of nanofluid. Enhancing volume fraction and viscous dissipation accelerates the heat transfer rate of nanofluid. The velocity, temperature, and heat transfer rates are decreased by an escalation of the Hartmann number. Further, enhancing the radiation parameter reduces the heat transfer rate and temperature of nanofluid.


2016 ◽  
Vol 20 (6) ◽  
pp. 2051-2064 ◽  
Author(s):  
Ridha Mebrouk ◽  
Mahfoud Kadja ◽  
Mohamed Lachi ◽  
Stéphane Fohanno

In the present paper a numerical study of natural turbulent convection in a tall cavity filled with nanofluids. The cavity has a heat source embedded on its bottom wall, while the left, right and top walls of the cavity are maintained at a relatively low temperature. The working fluid is a water based nanofluid having three nanoparticle types: alumina, copper and copper oxid. The influence of pertinent parameters such as Rayleigh number, the type of nanofluid and solid volume fraction of nanoparticles on the cooling performance is studied. Steady forms of twodimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved by the control volume based discretisation method employing the SIMPLE algorithm for pressure-velocity coupling. Turbulence is modeled using the standard k-? model. The Rayleigh number, Ra, is varied from 2.491009 to 2.491011. The volume fractions of nanoparticles were varied in the interval 0??? 6% . Stream lines, isotherms, velocity profiles and Temperature profiles are presented for various combinations of Ra, the type of nanofluid and solid volume fraction of nanoparticles. The results are reported in the form of average Nusselt number on the heated wall. It is shown that for all values of Ra, the average heat transfer rate from the heat source increases almost linearly and monotonically as the solid volume fraction increases. Finally the average heat transfer rate takes on values that decrease according to the ordering Cu, CuO and Al2O3.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1359
Author(s):  
Nawal A. Alshehri ◽  
Awatef Abidi ◽  
Muhammad Riaz Khan ◽  
Yanala Dharmendar Reddy ◽  
Saim Rasheed ◽  
...  

The suspension of tiny solid particles inside the energy transport liquids could enhance their thermal conductivity as well as provide an efficient and inventive approach to significantly improve their properties of heat transport. Therefore, our aim is to explore the radiative two-dimensional unsteady flow of a viscous nanofluid about an aligned magnetic field that includes the joint effect of suction, velocity slip, and heat source across a porous convective stretching/shrinking surface. Initially, using non-dimensional variables, the nonlinear governing partial differential equations (PDEs) were transformed into ordinary differential equations (ODEs) which were subsequently solved with the help of bvp4c built-in package in MATLAB. The results declare that escalating the values of the unsteadiness parameter escalates the friction drag whereas it reduces with the escalation of the slip parameter. Furthermore, the heat transfer rate escalates with the escalation of radiation and concentration parameter, and the escalation of the heat source parameter causes to reduce the heat transfer rate. Finally, it is found that the rate of heat transfer and friction drag continuously improve and decline against the rising rates of stretching, respectively.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 623
Author(s):  
Firas A. Alwawi ◽  
Mohammed Z. Swalmeh ◽  
Amjad S. Qazaq ◽  
Ruwaidiah Idris

The assumptions that form our focus in this study are water or water-ethylene glycol flowing around a horizontal cylinder, containing hybrid nanoparticles, affected by a magnetic force, and under a constant wall temperature, in addition to considering free convection. The Tiwari–Das model is employed to highlight the influence of the nanoparticles volume fraction on the flow characteristics. A numerical approximate technique called the Keller box method is implemented to obtain a solution to the physical model. The effects of some critical parameters related to heat transmission are also graphically examined and analyzed. The increase in the nanoparticle volume fraction increases the heat transfer rate and liquid velocity; the strength of the magnetic field has an adverse effect on liquid velocity, heat transfer, and skin friction. We find that cobalt nanoparticles provide more efficient support for the heat transfer rate of aluminum oxide than aluminum nanoparticles.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 258 ◽  
Author(s):  
Lioua Kolsi ◽  
Salem Algarni ◽  
Hussein A. Mohammed ◽  
Walid Hassen ◽  
Emtinene Lajnef ◽  
...  

A numerical study is performed to investigate the effects of adding Carbon Nano Tube (CNT) and applying a magnetic field in two directions (vertical and horizontal) on the 3D-thermo-capillary natural convection. The cavity is differentially heated with a free upper surface. Governing equations are solved using the finite volume method. Results are presented in term of flow structure, temperature field and rate of heat transfer. In fact, results revealed that the flow structure and heat transfer rate are considerably affected by the magnitude and the direction of the magnetic field, the presence of thermocapillary forces and by increasing nanoparticles volume fraction. In opposition, the increase of the magnetic field magnitude leads to the control the flow causing flow stabilization by merging vortexes and reducing heat transfer rate.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1138 ◽  
Author(s):  
Ammar I. Alsabery ◽  
Mohammad Ghalambaz ◽  
Taher Armaghani ◽  
Ali Chamkha ◽  
Ishak Hashim ◽  
...  

The mixed convection two-phase flow and heat transfer of nanofluids were addressed within a wavy wall enclosure containing a solid rotating cylinder. The annulus area between the cylinder and the enclosure was filled with water-alumina nanofluid. Buongiorno’s model was applied to assess the local distribution of nanoparticles in the host fluid. The governing equations for the mass conservation of nanofluid, nanoparticles, and energy conservation in the nanofluid and the rotating cylinder were carried out and converted to a non-dimensional pattern. The finite element technique was utilized for solving the equations numerically. The influence of the undulations, Richardson number, the volume fraction of nanoparticles, rotation direction, and the size of the rotating cylinder were examined on the streamlines, heat transfer rate, and the distribution of nanoparticles. The Brownian motion and thermophoresis forces induced a notable distribution of nanoparticles in the enclosure. The best heat transfer rate was observed for 3% volume fraction of alumina nanoparticles. The optimum number of undulations for the best heat transfer rate depends on the rotation direction of the cylinder. In the case of counterclockwise rotation of the cylinder, a single undulation leads to the best heat transfer rate for nanoparticles volume fraction about 3%. The increase of undulations number traps more nanoparticles near the wavy surface.


2019 ◽  
Vol 30 (5) ◽  
pp. 2583-2605 ◽  
Author(s):  
Mohammad Mohsen Peiravi ◽  
Javad Alinejad ◽  
D.D. Ganji ◽  
Soroush Maddah

Purpose The purpose of this study is investigating the effect of using multi-phase nanofluids, Rayleigh number and baffle arrangement simultaneously on the heat transfer rate and Predict the optimal arrangement type of baffles in the differentiation of Rayleigh number in a 3D enclosure. Design/methodology/approach Simulations were performed on the base of the L25 Taguchi orthogonal array, and each test was conducted under different height and baffle arrangement. The multi-phase thermal lattice Boltzmann based on the D3Q19 method was used for modeling fluid flow and temperature fields. Findings Streamlines, isotherms, nanofluid volume fraction distribution and Nusselt number along the wall surface for 104 < Ra < 108 have been demonstrated. Signal-to-noise ratios have been analyzed to predict optimal conditions of maximize and minimize the heat transfer rate. The results show that by choosing the appropriate height and arrangement of the baffles, the average Nusselt number can be changed by more than 57 per cent. Originality/value The value of this paper is surveying three-dimensional and two-phase simulation for nanofluid. Also using the Taguchi method for Predicting the optimal arrangement type of baffles in a multi-part enclosure. Finally statistical analysis of the results by using of two maximum and minimum target Function heat transfer rates.


Sign in / Sign up

Export Citation Format

Share Document