Syntheses and Crystal Structures of the Bromide-derivatized Lanthanoid(III) Ortho-Oxomolybdates(VI) LnBr[MoO4] (Ln = Pr, Nd, Sm, Gd– Lu)

2013 ◽  
Vol 68 (5-6) ◽  
pp. 616-624 ◽  
Author(s):  
Tanja Schustereit ◽  
Harald Henning ◽  
Thomas Schleid ◽  
Ingo Hartenbach

The lanthanoid(III) bromide ortho-oxomolybdates(VI) LnBr[MoO4] (Ln = Pr, Nd, Sm, Gd - Lu) crystallize triclinically in the space group P1 (a=686 - 689, b=713 - 741, c=1066 - 1121 pm, a =103 - 106, b =107 - 108, g = 92 - 95°) with Z =4. The crystal structure contains two crystallographically distinguishable Ln3+ cations, each one with a coordination number of seven plus one. (Ln1)3+ is surrounded by three bromide and four plus one oxide anions, while for (Ln2)3+ just one bromide and six plus one oxide anions belong to the coordination sphere. Considering the smallest lanthanoids, however, the distances to the farthest anions increase so much that their contribution to the coordination spheres becomes negligible in both cases. The polyhedra around (Ln1)3+ are connected to each other via common edges, which consist of two crystallographically identical Br- anions (Br1). Furthermore, the common structure of the LnBr[MoO4] series contains two crystallographically different, discrete [MoO4]2- ortho-oxomolybdate(VI) tetrahedra. Two plus one oxygen atoms of each [(Mo1)O4]2- unit are used to interconnect the polyhedra around (Ln1)3+ and (Ln2)3+ together with one Br- anion (Br2). The connection between two polyhedra around (Ln2)3+ is generated exclusively by two plus one oxygen atoms of two [(Mo2)O4]2- anions. The complete structural arrangement can be considered as a bundle of primitively packed 1¥{LnBr[MoO4]} chains with two alternating motifs of linkage, which are running parallel along [012].

1976 ◽  
Vol 54 (21) ◽  
pp. 3319-3324 ◽  
Author(s):  
Romolo Faggiani ◽  
Crispin Calvo

Crystals of CaK2As2O7 and CdK2P2O7, both grown from the melt, are monoclinic with Z = 4. The lattice parameters are a = 9.222(6), b = 5.835(3), c = 14.698(10) Å, β = 105.84(5)° with space group P21/c for the diarsenate and a = 9.737(2), b = 5.548(1), c = 12.766(2) Å, β = 106.50(2)° with space group C2/c for the diphosphate. The structures were refined by full-matrix least-squares methods utilizing 2070 reflections (R = 0.056) for the diarsenate and 1145 reflections (R = 0.067) for the diphosphate. Both structures contain pseudo-hexagonally packed anions, in staggered configurations, forming layers with the divalent cations in six coordinate sites between the layers. The average M—O bond lengths are 2.342 and 2.290 Å for M = Ca and Cd respectively. The K ion has nine oxygen atoms with mean K—O bond lengths of 2.943 and 3.020 Å in the diarsenate in the coordination sphere. The mean of the ten shortest K—O is 2.939 Å in the diphosphate.


2000 ◽  
Vol 56 (6) ◽  
pp. 1035-1045 ◽  
Author(s):  
E. V. Peresypkina ◽  
V. A. Blatov

Using the methods of coordination sequences and of molecular Voronoi–Dirichlet polyhedra, the topological properties of molecular packings and molecular coordination numbers (MCNs) were determined in the crystal structures of 33 575 monosystem organic compounds within the first three coordination spheres. Numerous examples of disagreement between the topology of molecular packing and the system of intermolecular contacts in a crystal structure were found. It is concluded that within the first coordination sphere most of the molecules tend to arrange with MCN = 14, obeying the model of the thinnest covering of space, but molecular packings as a whole tend to be constructed according to one of the close packings.


1993 ◽  
Vol 48 (12) ◽  
pp. 1732-1736 ◽  
Author(s):  
C. Müller ◽  
P. Böttcher

The reaction of diisobutylamine, H2S, and sulfur in a mixture of dimethylformamide, formamide, and ethanol yields orange crystals of bis(diisobutylammonium)-heptasulfide. The compound crystallizes in the centrosymmetric orthorhombic space group Pbca, the lattice constants are a = 11.234(4), b = 17.875(7), c = 27.009(10) Å. The S72-chain does not have the common helical all-trans-conformation, but a mixed conformation trans-cis-trans (sequence of the signs of torsion angles + + - - and - - + +).


1994 ◽  
Vol 49 (6) ◽  
pp. 770-772 ◽  
Author(s):  
Klaus Schulbert ◽  
Rainer Mattes

The reactions of N-substituted dithiocarbamic acid esters and nickel acetate yield, by partial degradation of the esters, the polynuclear nickel thiolato complexes cyclo-[(μ-SMe)2Ni]6, 1 and [(μ-SMe)2(Ni(MeNHCS2))2, 2. Their crystal structures have been determined. The Ni coordination spheres are comprised of four sulfur atoms in a planar arrangement. 1 is a second, highly symmetrical modification of the already known cyclic hexamer Ni6(SMe)12. In 2 two Ni(PhNHCS2) moieties are bridged to dimers by thiolato groups. Two of these dimers are connected to a tetramer by weak axial Ni-S interactions. Crystal data for 1: monoclinic, space group P21/n, a = 986.1(2), b = 1308.1(3), c = 1228.6(2) pm, β = 96.07(3)°, Z = 2, R = 0.072, Rw = 0.062, 3797 reflections. 2: orthorhombic, space group Pnma, a = 1790.0(4), b = 1806.7(4), c = 934.4(2) pm. Z = 4, R = 0.061, Rw = 0.051, 2079 reflections


1987 ◽  
Vol 42 (8) ◽  
pp. 972-976 ◽  
Author(s):  
Christian Robl

AbstractSingle crystals of EA[Q(NO2)2O4] · 4H2O (EA = Ca. Sr) were grown in aqueous silicagel. Ca2+ has CN 8. It is surrounded by 4 oxygen atoms of two bis-chelating [C6(NO2)2O4]2- ions and 4 water molecules, which form a distorted, bi-capped trigonal prism. Sr2+ is coordinated similarly, with an additional water molecule joining the coordination sphere to yield CN 8+1. Corrugated chains extending along [010] and consisting of EA2+ and nitranilate ions are the main feature of the crystal structure. Adjacent chains are interlinked by hydrogen bonds.


1989 ◽  
Vol 44 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Jutta Hartmann ◽  
Shi-Qi Dou ◽  
Alarich Weiss

Abstract The 79Br and 127I NQR spectra were investigated for 1,2-diammoniumethane dibromide, -diiodide, 1,3-diammoniumpropane dibromide, -diiodide, piperazinium dibromide monohydrate, and piperazinium monoiodide in the temperature range 77 ≦ T/K ≦ 420. Phase transitions could be observed for the three iodides. The temperatures for the phase transitions are: 400 K and 404 K for 1,2-diammoniumethane diiodide, 366 K for 1,3-diammoniumpropane diiodide, and 196 K for piperazinium monoiodide.The crystal structures were determined for the piperazinium compounds. Piperazinium dibromide monohydrate crystallizes monoclinic, space group C2/c, with a= 1148.7 pm, 0 = 590.5 pm, c= 1501.6pm, β = 118.18°, and Z = 4. For piperazinium monoiodide the orthorhombic space group Pmn 21 was found with a = 958.1 pm, b = 776.9 pm, c = 989.3 pm, Z = 4. Hydrogen bonds N - H ... X with X = Br, I were compared with literature data.


1967 ◽  
Vol 45 (20) ◽  
pp. 2303-2316 ◽  
Author(s):  
J. S. Stephens ◽  
C. Calvo

β-Zn3(PO4)2 crystallizes in the monoclinic space group P 21/c with lattice parameters, a = 9.393(3) Å, b = 9.170(6) Å, c = 8.686(3) Å, β = 125.73(10)°, and Z = 4. The three independent cations are strongly ligated to 4, 5, and 5 oxygen atoms, with average Zn—O bond distances of 1.98 ± 0.09 Å, 2.10 ± 0.10 Å, and 2.08 ± 0.13 Å respectively. In addition there are two longer Zn—O distances of 2.51 Å and 2.55 Å in this structure. The PO4 groups exist as independent, nearly regular tetrahedra, with each oxygen atom ligated to two cations. Unlike the structures found for the α and γ phases of Zn3(PO4)2, which contain ribbons and sheets respectively as the basic cation coordination motif, the structure of β-Zn3(PO4)2 contains interconnected sheets.


1994 ◽  
Vol 38 ◽  
pp. 749-755 ◽  
Author(s):  
A. Olowe

Abstract Pyroaurite and sjogrenite belong to the group of sandwiched lamellar metal hydroxides which have a fixed metallic ions MII:MIII ratio for a particular class. Their crystal structure consists of positively charged metal hydroxide blocks intercalated with negatively charged interlayers. The atomic positions for the interlayer are definite for a particular class. The exact chemical formula of the pyroaurite class is determined from crystal structure analysis to be MII 6MIII 2(OH)16-CO3-4.5H2O; it crystallizes in the space group Rm with a = 12.4376 Å and c = 23.4126 Å. Sjogrenite, MII 6 MIII 2(OH)16-CO3-4H2O crystallizes in the space group P63/mcm. The crystallogiraphy and structural relationship between these classes are discussed. Previous discussion on these compounds did not give any conclusion on the exact chemical formula and the atomic positions.


1995 ◽  
Vol 48 (12) ◽  
pp. 1933 ◽  
Author(s):  
CT Abrahams ◽  
GB Deacon ◽  
CM Forsyth ◽  
WC Patalinghug ◽  
BW Skelton ◽  
...  

With the facile displacement being utilized of thf from Yb(pin)2(thf)4 (pin = 2-phenylindol-1-yl, thf = tetrahydrofuran) in toluene solution, the complexes Yb(pin)2(dme)2 (dme = 1,2- dimethoxyethane), Yb(pin)2 (tmen)(tmen = N,N,N′,N′-tetramethylethane-1,2-diamine) and Yb(pin)2(diglyme)(thf) (diglyme = bis(2-methoxyethyl) ether) have been prepared from the respective ligands and Yb(pin)2(thf)4. Yb(pin)2 (diglyme) (thf) [monoclinic, space group P 21 /c, a 15.35(1), b 16.179(5), c 14.45(2) Ǻ, β 107.51(8)°, Z 4, R 0.044 for 2956 (I > 3σ(I)) 'observed' reflections] has a monomeric six-coordinate structure with transoid nitrogen donor atoms, N-Yb-N 143.6(4)° and an irregular coordination polyhedron described as either a distorted trigonal prism or a monocapped square pyramid. Attempted crystallization of Yb(pin)2 (thf) by partial desolvation of Yb(pin)2(thf)4 in hot toluene, containing a trace of dme, gave a mixture of red Yb(pin)2(thf) and orange [Yb(pin)2(dme)]2. The latter was independently synthesized by partial desolvation of Yb(pin)2(dme)2 in toluene. An X-ray crystal structure showed [Yb(pin)2(dme)]2 [monoclinic, space group P 21/c, a 11 .614(2), b 15.945(7), c 15.327(4) Ǻ, β 110.19(2)°, Z 2 dimers, R 0.070 for 2314 (I ≥ 3σ(I)) 'observed' reflections] to be a dimer with two bridging pin ligands, coordinated through nitrogen only. There is an approximately square pyramidal five-coordinate ytterbium environment with an apical dme oxygen, and with two bridging nitrogens, a terminal nitrogen, and a dme oxygen in the basal plane.


Sign in / Sign up

Export Citation Format

Share Document