scholarly journals Physical, Chemical and Optical Properties of Fine Aerosol as a Function of Relative Humidity at Gosan, Korea during ABC-EAREX 2005

2013 ◽  
Vol 7 (3) ◽  
pp. 129-138 ◽  
Author(s):  
Kwang-Joo Moon ◽  
Jin-Seok Han ◽  
Seog-Yeon Cho
2021 ◽  
Author(s):  
Alagan Muthurasu ◽  
V GANESH

Carbon dots (CDs) exhibiting fluorescence property are generally derived from carbonaceous materials and possessing ultra small size with various exciting physical, chemical and photo-properties that have been used in many...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nguyen Thi Han ◽  
Vo Khuong Dien ◽  
Ming-Fa Lin

AbstractLi2SiO3 compound exhibits unique electronic and optical properties. The state-of-the-art analyses, which based on first-principle calculations, have successfully confirmed the concise physical/chemical picture and the orbital bonding in Li–O and Si–O bonds. Especially, the unusual optical response behavior includes a large red shift of the onset frequency due to the extremely strong excitonic effect, the polarization of optical properties along three-directions, various optical excitations structures and the most prominent plasmon mode in terms of the dielectric functions, energy loss functions, absorption coefficients and reflectance spectra. The close connections of electronic and optical properties can identify a specific orbital hybridization for each distinct excitation channel. The presented theoretical framework will be fully comprehending the diverse phenomena and widen the potential application of other emerging materials.


2021 ◽  
Author(s):  
Maria Ángeles Burgos Simón ◽  
Elisabeth Andrews ◽  
Gloria Titos ◽  
Angela Benedetti ◽  
Huisheng Bian ◽  
...  

<p>The particle hygroscopic growth impacts the optical properties of aerosols and, in turn, affects the aerosol-radiation interaction and calculation of the Earth’s radiative balance. The dependence of particle light scattering on relative humidity (RH) can be described by the scattering enhancement factor f(RH), defined as the ratio between the particle light scattering coefficient at a given RH divided by its dry value.</p><p>The first effort of the AeroCom Phase III – INSITU experiment was to develop an observational dataset of scattering enhancement values at 26 sites to study the uptake of water by atmospheric aerosols, and evaluate f(RH) globally (Burgos et al., 2019). Model outputs from 10 Earth System Models (CAM, CAM-ATRAS, CAM-Oslo, GEOS-Chem, GEOS-GOCART, MERRAero, TM5, OsloCTM3, IFS-AER, and ECMWF) were then evaluated against this in-situ dataset. Building on these results, we investigate f(RH) in the context of other aerosol optical and chemical properties, making use of the same 10 Earth System Models (ESMs) and in-situ measurements as in Burgos et al. (2020) and Titos et al. (2021).</p><p>Given the difficulties of deploying and maintaining instrumentation for long-term, accurate and comprehensive f(RH) observations, it is desirable to find an observational proxy for f(RH). This observation-based proxy would also need to be reproduced in modelling space. Our aim here is to evaluate how ESMs currently represent the relationship between f(RH), scattering Ångström exponent (SAE), and single scattering albedo (SSA). This work helps to identify current challenges in modelling water-uptake by aerosols and their impact on aerosol optical properties within Earth system models.</p><p>We start by analyzing the behavior of SSA with RH, finding the expected increase with RH for all site types and models. Then, we analyze the three variables together (f(RH)-SSA-SAE relationship). Results show that hygroscopic particles tend to be bigger and scatter more than non-hygroscopic small particles, though variability within models is noticeable. This relationship can be further studied by relating SAE to model chemistry, by selecting those grid points dominated by a single chemical component (mass mixing ratios > 90%). Finally, we analyze model performance at three specific sites representing different aerosol types: Arctic, marine and rural. At these sites, the model data can be exactly temporally and spatially collocated with the observations, which should help to identify the models which exhibit better agreement with measurements and for which aerosol type.</p><p> </p><p>Burgos, M.A. et al.: A global view on the effect of water uptake on aerosol particle light scattering. Sci Data 6, 157. https://doi.org/10.1038/s41597-019-0158-7, 2019.</p><p>Burgos, M.A. et al.: A global model–measurement evaluation of particle light scattering coefficients at elevated relative humidity, Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, 2020.</p><p>Titos, G. et al.: A global study of hygroscopicity-driven light scattering enhancement in the context of other in-situ aerosol optical properties, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1250, in review, 2020.</p>


1898 ◽  
Vol 63 (389-400) ◽  
pp. 54-56

The nature of the hard polished outer layer of the teeth of this group of fishes has been from time to time a subject of discussion, some authors holding that it is enamel, whilst others deny its claim to be so styled. The author describes its physical, chemical, and histological peculiarities, calling attention to its hardness, its optical properties, its almost entire solubility in weak acids, and to its tubularity, in all of which respects it resembles unquestionably an enamel.


Author(s):  
S. G. Howell ◽  
A. D. Clarke ◽  
Y. Shinozuka ◽  
V. Kapustin ◽  
C. S. McNaughton ◽  
...  

2010 ◽  
Vol 39 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Yasuhito Koyama ◽  
Kazuko Nakazono ◽  
Hideki Hayashi ◽  
Toshikazu Tataka

Sign in / Sign up

Export Citation Format

Share Document