Energy Reduction Methods using Energy-aware QoS Routing Scheme and Its Characteristics in IP Networks

Author(s):  
Chimoon Han
Author(s):  
Priyanka Bharadwaj ◽  
Surjeet Balhara

Background & Objective: There are some challenging issues such as providing Quality of Service (QoS), restricted usage of channels and shared bandwidth pertaining to ad-hoc networks in a dynamic topology. Hence, there is a requirement to support QoS for the application environment and multimedia services in ad-hoc networks with the fast growing and emerging development of information technology. Eventually, bandwidth is one of the key elements to be considered. Methods: Energy aware QoS routing protocol in an ad-hoc network is presented in this article. Results and Conclusion: The simulation results indicate that the improved protocol outperforms Adhoc On-Demand Distance Vector (AODV) routing protocol in terms of QoS metric such as throughput, packet delivery ratio, loss rate and average delay.


Author(s):  
Fuseini Jibreel ◽  
Emmanuel Tuyishimire ◽  
I M Daabo

Wireless Sensor Networks (WSNs) continue to provide essential services for various applications such as surveillance, data gathering, and data transmission from the hazardous environments to safer destinations. This has been enhanced by the energy-efficient routing protocols that are mostly designed for such purposes. Gateway-based Energy-Aware Multi-hop Routing protocol (MGEAR) is one of the homogenous routing schemes that was recently designed to more efficiently reduce the energy consumption of distant nodes. However, it has been found that the protocol has a high energy consumption rate, lower stability period, less data transmission to the Base station (BS). In this paper, an enhanced Heterogeneous Gateway-based Energy-Aware multi-hop routing protocol ( HMGEAR) is proposed. The proposed routing scheme is based on the introduction of heterogeneous nodes in the existing scheme, selection of the head based on the residual energy, introduction of multi-hop communication strategy in all the regions of the network, and implementation of energy hole elimination technique. Results show that the proposed routing scheme outperforms two existing ones.


2021 ◽  
Author(s):  
Michael Ryan Sahai

Message security in multi-hop infrastructure-less networks such as Mobile Ad Hoc Net- works has proven to be a challenging task. A number of trust-based secure routing protocols has recently been introduced comprising of the traditional route discovery phase and a data transmission phase. In the latter, the action of relaying the data from one mobile node to another relies on the peculiarity of the wireless transmission medium as well as the capability of the source nodes to keep their energy level at an acceptable and reasonable level, posing another concern which is that of energy efficiency. This thesis proposes an Energy-Aware Trust Based Multi-path secured routing scheme (E-TBM) for MANETs, based on the dynamic source routing protocol (DSR). Results show that the E-TBM scheme outperforms the Trust Based Multi-path (TBM) secured routing scheme [1], chosen as a benchmark, in terms of energy consumption of the selected routing paths, number of dead nodes, trust compromise and route selection time, chosen as performance metrics.


Sign in / Sign up

Export Citation Format

Share Document