scholarly journals Erratum : Geology of the area where debris flows occurred by a heavy rainfall in Hiroshima at August 20, 2014

2016 ◽  
Vol 122 (2) ◽  
pp. 86-87
Author(s):  
Makoto Saito ◽  
Daisaku Kawabata ◽  
Daisuke Sato ◽  
Shoji Doshida ◽  
Kiminori Araiba
Keyword(s):  
Author(s):  
Rikiya KOBASHI ◽  
Masato KITA ◽  
Tatsuhiko UCHIDA ◽  
Yoshihisa KAWAHARA

Author(s):  
Rudolf Vukelic

The term landslide or, less frequently, landslip, refers to several forms of mass wasting that include a wide range of ground movements, such as rock falls, deep-seated slope failures, mudflows and debris flows. Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients: from mountain ranges to coastal cliffs or even underwater, in which case they are called submarine landslides. Gravity is the primary driving force for a landslide to occur, but there are other factors affecting slope stability which produce specific conditions that make a slope prone to failure. In many cases, the landslide is triggered by a specific event (such as a heavy rainfall, an earthquake, a slope cut to build a road, and many others), although this is not always identifiable.


2021 ◽  
Vol 9 (1) ◽  
pp. 94-102
Author(s):  
Rikiya KOBASHI ◽  
Masato KITA ◽  
Tatsuhiko UCHIDA ◽  
Yoshihisa KAWAHARA

2015 ◽  
Vol 121 (9) ◽  
pp. 339-346 ◽  
Author(s):  
Makoto Saito ◽  
Daisaku Kawabata ◽  
Daisuke Sato ◽  
Shoji Doshida ◽  
Kiminori Araiba
Keyword(s):  

2021 ◽  
Author(s):  
Huilin Bai ◽  
wenkai feng ◽  
Xiaoyu Yi ◽  
Hongyu Fang ◽  
Yiying Wu ◽  
...  

Abstract From June 10th to 13th, 2019, a continuous heavy rainfall occurred in Longchuan County, Guangdong Province, causing many landslide hazards. Among Longchuan County districts, Mibei village is one of the hardest-hit areas and suffered severe losses. In this paper, field investigation, remote sensing image interpretation , and UAV aerial photography were used to investigate and analyze hazard characteristics. Combined with rainfall monitoring data, laboratory and field tests data, and existing research results, the characteristics and failure mechanism of group-occurring landslides in Mibei village were studied. Because of the continuous heavy rainfall, 327 landslides occurred in the study area, mainly distributed in the north of the Mibei river and along the X158 road. The terrain slope of landslide hazards ranged from 35° to 45°, and the slope structure can be divided into two types. Granite residual soil was the main part of landslide mass, and sliding surface developed along with the interface between bedrock and covering layer. The continuous heavy rainfall from June 10th to 13th was the main triggering factor of the disaster. The total precipitation was 281.3 mm, and the rainfall on June 10th was 153.5 mm. The rain led to the continuous increase of volume water content in granite residual soil and completely weathered granite. The shear strength and parameters of the two materials changed differently, and slope stability continued to decrease, and then landslides occurred under terrain conditions and engineering excavation space. Untimely support and unreasonable support measures for the excavation slope exacerbated the disaster. The development degree of debris flows in the study area was very low, and debris flows were shown as the secondary disaster of landslides. The branch gully terrain is the key to transforming the landslide into the debris flow, and a large amount of loose deposits in the main gully will become the potential source of debris flow in the future.


1969 ◽  
Vol 8 (54) ◽  
pp. 413-425 ◽  
Author(s):  
Garry D. Mckenzie

AbstractDetailed observations on a collapsing kame terrace indicate that the terrace is being reshaped by: slumping and sliding of debris into depressions, melt-water erosion on the side of the terrace, debris flows in the gullies, and stagnant-ice bursts, a phenomenon analogous to a glacier burst except in the mode of formation of the water. Temperatures in the gravel over the ice, where the gravel is about 4 m thick, indicate that the rate of melting of the upper surface of the ice due to conduction may be as high as 24 cm year−1. Highest temperatures in the gravel were recorded during periods of heavy rainfall.


1969 ◽  
Vol 8 (54) ◽  
pp. 413-425 ◽  
Author(s):  
Garry D. Mckenzie

Abstract Detailed observations on a collapsing kame terrace indicate that the terrace is being reshaped by: slumping and sliding of debris into depressions, melt-water erosion on the side of the terrace, debris flows in the gullies, and stagnant-ice bursts, a phenomenon analogous to a glacier burst except in the mode of formation of the water. Temperatures in the gravel over the ice, where the gravel is about 4 m thick, indicate that the rate of melting of the upper surface of the ice due to conduction may be as high as 24 cm year−1. Highest temperatures in the gravel were recorded during periods of heavy rainfall.


2021 ◽  
Vol 21 (1) ◽  
pp. 101-110
Author(s):  
Hyeong-Jin Kim ◽  
Ji-Sung Lee ◽  
Yun-Tae Kim

Debris flow is a type of landslide that occurs mainly in mountain valley areas during heavy rainfall. Various types of barriers have been installed in South Korea to reduce the damage caused by debris flows. However, there is no reasonable design standard when installing the barrier, and an experimental study for the performance evaluation of barriers is insufficient. In this study, the performance of the net-type barrier was evaluated by analyzing the effect of the ground conditions and mesh size of the net-type barrier on the debris flow behavior by reducing the front velocity and deposition volume. As a result, for areas with less fine content, the efficiency of the net-type barrier increased as the mesh size of the net-type barrier decreased. Accordingly, the ground conditions and mesh size of the net-type barrier significantly influence the performance of the net-type barrier. The damage caused by debris flow can be sufficiently reduced through the reasonable design of a net-type barrier.


2019 ◽  
Vol 14 (9) ◽  
pp. 1227-1235
Author(s):  
Tomohiro Ishizawa ◽  
◽  
Toru Danjo

The July 2018 heavy rain, which was actually a series of intermittent downpours instead of a short-term continuous heavy rainfall, triggered a large number of sediment disasters. This study was conducted to evaluate sediment disaster triggers. In the study, an interview-based survey was conducted on the occurrence times of the sediment disasters caused by the heavy rain and a rainfall analysis was completed using analyzed rainfall data from the Japan Meteorological Agency. These were followed by an analysis of estimated occurrence times of the sediment disasters and the temporal changes in rainfall indices determined through the rainfall analysis. An analysis of disasters at 36 sites examined for the purposes of this study showed that many occurred when the soil water index (SWI) during the study period (June 28, 2018, to the estimated occurrence time of a sediment disaster) was maximized. The analysis also indicated that slope failures tended to occur when hourly rainfall was relatively low and the SWI was high and debris flows occurred when the SWI was high and hourly rainfall was relatively high. Examination of the data, considering the alert level of the SWI, showed that in cases where the SWI continued to increase after exceeding the alert level, 75% of the sediment disasters analyzed occurred within approximately 19 h.


Sign in / Sign up

Export Citation Format

Share Document