scholarly journals A Case of Central Nervous System Infection Due to West Nile Virus Lineage-1 in Ankara Province, Turkey

2013 ◽  
pp. 164-172 ◽  
Author(s):  
Murat ÖCAL ◽  
Halil ÖNDER ◽  
Ethem M. ARSAVA ◽  
Şehnaz ALP ◽  
Aykut ÖZKUL ◽  
...  
2015 ◽  
Vol 2 (4) ◽  
Author(s):  
Sejal Morjaria ◽  
Esther Arguello ◽  
Ying Taur ◽  
Kent Sepkowitz ◽  
Vaios Hatzoglou ◽  
...  

Abstract The spectrum of West Nile virus (WNV) infection continues to be elucidated. Many cases of WNV are asymptomatic; however, in immunocompromised patients, symptoms are more likely to be severe. We describe fatal WNV central nervous system disease in lymphoma patients who received rituximab, blunting the inflammatory response and complicating diagnosis.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 105 ◽  
Author(s):  
Evandro R. Winkelmann ◽  
Huanle Luo ◽  
Tian Wang

West Nile virus (WNV), a neurotropic single-stranded flavivirus has been the leading cause of arboviral encephalitis worldwide.  Up to 50% of WNV convalescent patients in the United States were reported to have long-term neurological sequelae.  Neither antiviral drugs nor vaccines are available for humans.  Animal models have been used to investigate WNV pathogenesis and host immune response in humans.  In this review, we will discuss recent findings from studies in animal models of WNV infection, and provide new insights on WNV pathogenesis and WNV-induced host immunity in the central nervous system.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 485 ◽  
Author(s):  
Sarah Stonedahl ◽  
Penny Clarke ◽  
Kenneth L. Tyler

Encephalitis resulting from viral infections is a major cause of hospitalization and death worldwide. West Nile Virus (WNV) is a substantial health concern as it is one of the leading causes of viral encephalitis in the United States today. WNV infiltrates the central nervous system (CNS), where it directly infects neurons and induces neuronal cell death, in part, via activation of caspase 3-mediated apoptosis. WNV infection also induces neuroinflammation characterized by activation of innate immune cells, including microglia and astrocytes, production of inflammatory cytokines, breakdown of the blood-brain barrier, and infiltration of peripheral leukocytes. Microglia are the resident immune cells of the brain and monitor the CNS for signs of injury or pathogens. Following infection with WNV, microglia exhibit a change in morphology consistent with activation and are associated with increased expression of proinflammatory cytokines. Recent research has focused on deciphering the role of microglia during WNV encephalitis. Microglia play a protective role during infections by limiting viral growth and reducing mortality in mice. However, it also appears that activated microglia are triggered by T cells to mediate synaptic elimination at late times during infection, which may contribute to long-term neurological deficits following a neuroinvasive WNV infection. This review will discuss the important role of microglia in the pathogenesis of a neuroinvasive WNV infection. Knowledge of the precise role of microglia during a WNV infection may lead to a greater ability to treat and manage WNV encephalitis.


Sign in / Sign up

Export Citation Format

Share Document