scholarly journals Contribution of artificial intelligence applications developed with the deep learning method to the diagnosis of COVID-19 pneumonia on computed tomography

2021 ◽  
Vol 69 (4) ◽  
pp. 486-491
Author(s):  
Nevin Aydın ◽  
Özer Çelik
Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 901
Author(s):  
Fucong Liu ◽  
Tongzhou Zhang ◽  
Caixia Zheng ◽  
Yuanyuan Cheng ◽  
Xiaoli Liu ◽  
...  

Artificial intelligence is one of the most popular topics in computer science. Convolutional neural network (CNN), which is an important artificial intelligence deep learning model, has been widely used in many fields. However, training a CNN requires a large amount of labeled data to achieve a good performance but labeling data is a time-consuming and laborious work. Since active learning can effectively reduce the labeling effort, we propose a new intelligent active learning method for deep learning, which is called multi-view active learning based on double-branch network (MALDB). Different from most existing active learning methods, our proposed MALDB first integrates two Bayesian convolutional neural networks (BCNNs) with different structures as two branches of a classifier to learn the effective features for each sample. Then, MALDB performs data analysis on unlabeled dataset and queries the useful unlabeled samples based on different characteristics of two branches to iteratively expand the training dataset and improve the performance of classifier. Finally, MALDB combines multiple level information from multiple hidden layers of BCNNs to further improve the stability of sample selection. The experiments are conducted on five extensively used datasets, Fashion-MNIST, Cifar-10, SVHN, Scene-15 and UIUC-Sports, the experimental results demonstrate the validity of our proposed MALDB.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Ilker Ozsahin ◽  
Boran Sekeroglu ◽  
Musa Sani Musa ◽  
Mubarak Taiwo Mustapha ◽  
Dilber Uzun Ozsahin

The COVID-19 diagnostic approach is mainly divided into two broad categories, a laboratory-based and chest radiography approach. The last few months have witnessed a rapid increase in the number of studies use artificial intelligence (AI) techniques to diagnose COVID-19 with chest computed tomography (CT). In this study, we review the diagnosis of COVID-19 by using chest CT toward AI. We searched ArXiv, MedRxiv, and Google Scholar using the terms “deep learning”, “neural networks”, “COVID-19”, and “chest CT”. At the time of writing (August 24, 2020), there have been nearly 100 studies and 30 studies among them were selected for this review. We categorized the studies based on the classification tasks: COVID-19/normal, COVID-19/non-COVID-19, COVID-19/non-COVID-19 pneumonia, and severity. The sensitivity, specificity, precision, accuracy, area under the curve, and F1 score results were reported as high as 100%, 100%, 99.62, 99.87%, 100%, and 99.5%, respectively. However, the presented results should be carefully compared due to the different degrees of difficulty of different classification tasks.


2020 ◽  
pp. 1-10
Author(s):  
Ruijuan Wang ◽  
Wei Zhuo

The image intelligent processing analysis technology uses a computer to imitate and execute some intellectual functions of the human brain, and realizes an image processing system with artificial intelligence, that is, an image processing analysis technology is an understanding of an image. The degree of intelligent automated analysis and processing is low, many operations need to be done manually, causing human error, inaccurate detection, and time-consuming and laborious. Deep learning method can extract features step by step in the original image from the bottom to the top. Therefore, based on feature analysis technology, this paper uses the deep learning method to intelligently and automatically analyse the visual image. This method only needs to send the image into the system, and then the manual analysis is not needed, and the analysis result of the final image can be obtained. The process is completely intelligent and automatically processed. First, improve the deep learning model and use massive image data to choose and optimize parameters. Results indicate that our method not only automatically derives the semantic information of the image, but also accurately understands the image accurately and improve the work efficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yafen Li ◽  
Wen Li ◽  
Jing Xiong ◽  
Jun Xia ◽  
Yaoqin Xie

Cross-modality medical image synthesis between magnetic resonance (MR) images and computed tomography (CT) images has attracted increasing attention in many medical imaging area. Many deep learning methods have been used to generate pseudo-MR/CT images from counterpart modality images. In this study, we used U-Net and Cycle-Consistent Adversarial Networks (CycleGAN), which were typical networks of supervised and unsupervised deep learning methods, respectively, to transform MR/CT images to their counterpart modality. Experimental results show that synthetic images predicted by the proposed U-Net method got lower mean absolute error (MAE), higher structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) in both directions of CT/MR synthesis, especially in synthetic CT image generation. Though synthetic images by the U-Net method has less contrast information than those by the CycleGAN method, the pixel value profile tendency of the synthetic images by the U-Net method is closer to the ground truth images. This work demonstrated that supervised deep learning method outperforms unsupervised deep learning method in accuracy for medical tasks of MR/CT synthesis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joel Jaskari ◽  
Jaakko Sahlsten ◽  
Jorma Järnstedt ◽  
Helena Mehtonen ◽  
Kalle Karhu ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 346
Author(s):  
Atınç Yılmaz

Total Shoulder Arthroplasty (TSA) is the process of replacing the damaged ball and socket joint in the shoulder with a prosthesis made with polyethylene and metal components. After this procedure, intervention may be required as a result of damage to the prosthesis, except for the need for an examination regarding the prosthesis at certain periods. If the patient does not have information about the model and manufacturer of the prosthesis, the treatment process is delayed. Artificial intelligence-assisted systems can speed up the treatment process by classifying the manufacturer and model of the prosthesis. In this study, artificial intelligence methods were applied to classify shoulder implants using X-Ray images. The model and manufacturer of the prosthesis is detected by using the proposed deep learning method. Besides, the most commonly used machine learning classifiers were applied for the same problem to compare the results and show the effectiveness of the proposed method. In addition, the accuracy and precision analysis and measurements of the processing times for the applied methods were performed to reveal the performance, accuracy, and efficiency of the study. In order to measure the performance of the proposed method, it was compared with studies on the same problem in the literature. As a result of the comparison, it was found that the proposed method, with an accuracy rate of 97.2%, performed better than the other studies. In the study, the implant manufacturer and model are classified in order to carry out the implant surgery process in the best way with the proposed deep learning model. With the success of the proposed system, the applicability of this model in similar prosthesis classifications has been shown. Differently from the studies in the literature, the channel selection formula is presented in the proposed deep learning method recommended for selecting the most distinctive feature filters.


Sign in / Sign up

Export Citation Format

Share Document