scholarly journals Poszukiwanie samorzutnych mutantów woskowych wśród ziaren pyłku u kilku gatunków i linii 24-chromosomowych ziemniaków [The searching for the spontaneous waxy mutation in pollen grains of some diploid forms of wild potatoes]

2015 ◽  
Vol 26 (2) ◽  
pp. 293-302
Author(s):  
L. Hausbrandt ◽  
W. Golinowski ◽  
E. Sawicka

Only in one of 12 investigated species i.e. in <i>Solanum chacoense (gibberulosum)</i> which became pollen staining red when treated with I+KI was been found. However in three forms:<i> Solanum verrucosum</i>, 133 <i>Solanum chacoense (Schickii)</i> and 127 <i>Solanum chacoense (gibberulosum)</i> the dimorphism of starch grains within the anther wall has been observed. It can be assumed that in these forms starch with a prevailing amount of amylopectin will be formed.

2015 ◽  
Vol 140 (4) ◽  
pp. 356-361 ◽  
Author(s):  
Dongmei Wei ◽  
Huimin Xu ◽  
Ruili Li

Anthers contain starch and neutral lipids, which have key roles in microspore ontogeny and gametophyte development. In this study, we observed the dynamic changes in starch and neutral lipids in the anther developmental processes of castor (Ricinus communis) by cytochemical methods. Starch grains and neutral lipids presented a regular dynamic distribution during anther development. In young anthers, some neutral lipids accumulated in sporogenous cells, whereas neutral lipids disappeared with microspore growth. At the late microspore stage, starch grains began to accumulate in microspores, and the starch content of bicellular pollen significantly increased after microspore mitosis. At anthesis, starch grains and neutral lipids accumulated in the mature pollen grains. Visible changes occurred in anther wall cells. The epidermis, middle layer, and tapetum were degenerated, and only a single layer of endothecium remained at anthesis. The dynamic variation of starch grains and neutral lipids in tapetal cells was consistent with the changes in microspores and pollen during anther development. All these findings demonstrated that tapetal cells directly interacted with the developing gametophytes. The tapetal cells play an important role in supplying nutritional substances for microspore absorption. Moreover, the endothecium protects the pollen and contributes to anther dehiscence. The results of this study provide a foundation for the further research on sexual reproduction in angiosperms.


2017 ◽  
pp. 25
Author(s):  
Sonia Vázquez-Santana ◽  
César A. Domínguez ◽  
Judith Márquez-Guzmán

We studied the development of reproductive structures in pin and thrum morphs of Erythroxylum havanense. The young anther wall consists of an epidermis, endothecium , 1-3 middle layers anda binucleate secretory tapetum. The mature anther wall has only two layers: epidermis and endothecium. Microspore tetrads are tetrahedral or isobilateral. Mature pollen grains are tricolporate, bicellular and contain starch grains. Exine sculpturing is verrugate in thrum pollen and reticulate in pin pollen. The ovule is sessile, pendulous, anatropous, bitegmic and crassinucellate. The embryo sac is heptacellular. An endothelium is differentiated. The endosperm development is nuclear, and the basal part of the nucellus persists during early endosperm development. Both integuments form the seed coat.


2017 ◽  
pp. 43 ◽  
Author(s):  
Silvia Espinosa-Matías ◽  
Sergio Zamudio ◽  
Judith Márquez-Guzmán

In order to gain greater knowledge about the embryology of the genus Pinguicula (Lentibulariaceae), a study of the development of male structures was conducted for a representative species of each subgenus. Embryological features concerning the development of the anther wall, microsporogenesis, microgametogenesis and pollen grains are described for the three species. These were generally consistent between them, and this evidence strongly supports the hypothesis that it is a monophyletic group. It does not support the division of the genus Pinguicula into three subgenera: Isoloba, Pinguicula and Temnoceras proposed by Casper (1966).


2017 ◽  
pp. 5
Author(s):  
Citlali Núñez-Mariel ◽  
E. Mark Engleman ◽  
Judith Márquez-Guzmán

This is a contribution to the embryology of cacti and to the definition of their reproductory structures. The development of anthers, ovules and seeds of Pachycereus militaris is described. The type of development of the anther wall is monocotyledonous. This may have taxonomic importance above the family level. The endothecium is formed by a single stratum and the pollen grains are tricolpate, spinulate and punctitegilate. A lineal triad of megaspores was observed. The functional megaspore is the chalazal one. It is proposed that the term campylotropous should be uti lized for describing the ovule type, while the term circinotropous should be reserved for the funicle. In contrast to the stated by other authors, this study suggests that the seeds of Pachycereus militaris should be considered as non-albuminous and non-perispermous.


1968 ◽  
Vol 16 (1) ◽  
pp. 1 ◽  
Author(s):  
GL Davis

A comparative study was made of material collected from four localities in New South Wales and Queensland and a number of embryological aberrations were found to be common to all districts. During microsporogenesis, certain tapetal cells not only failed to contribute to the tapetal periplasmodium but, after increasing in size, they separated from the anther wall and resembled one-, two-, or four-nucleate embryo sacs developing among the microspores. In one anther a structure was present which was very similar to a fully differentiated embryo sac. Although the pollen grains of some anthers contained male gametes, most anthers dehisced when the pollen was two-celled and some shrivelled soon after meiosis. Megasporogenesis was followed by the formation of linear tetrads of megaspores, but embryo sac formation was the result of somatic apospory and C. lappulacea appears to be an obligate apomict. The enlarging somatic cell usually invades the nucellar lobe and replaces the megaspores but one or more such celis commonly develop also in the chalaza, and up to eight embryo sacs were found in one ovule. Enlargement of a chalazal embryo sac sometimes resulted in penetration of the ovular epidermis and its invasion of the loculus as a haustorium-like structure. Extrusion of a developing embryo sac through the micropyle was common. Embryogeny is of the Asterad type, but vertical division of the terminal cell ca was delayed until after the basal cell cb had given rise to superposed cells m and ci. Polyembryony was common but only one embryo in each ovule reached maturity. Endosperm formation was independent of embryogeny but unless it was initiated before the globular stage of the embryo, the embryo sac collapsed and the embryo degenerated.


2010 ◽  
Vol 58 (7) ◽  
pp. 597 ◽  
Author(s):  
Stella M. Solís ◽  
Beatriz Galati ◽  
María S. Ferrucci

Microsporogenesis and microgametogenesis of two species, Cardiospermum grandiflorum Sw. and Urvillea chacoensis Hunz. (Sapindaceae, Paullinieae), were studied using light and transmission electron microscopy. Both species are monoecious, with staminate and hermaphrodite, although functionally pistillate, flowers. A comparative pollen-development study of these two floral morphs is reported. For the present study, five stages of pollen ontogeny were identified. The development of the anther wall is of basic type. Its wall consists of epidermis, endothecium, two middle layers and a uninucleate secretory tapetum. The microspore tetrads are tetrahedral. The mature anther in staminate flowers presents the endothecium with well developed fibrillar thickenings, remains of tapetal cells, a single locule formed in the theca by dissolution of the septum before anther dehiscence and two-celled pollen grains when shed. In functionally pistillate flowers, the mature anthers present remnants of the middle layers, tapetal cells without signs of degradation, the theca with two locules and pollen grains uni- or bicellular, some of them with the cytoplasm collapsed. These anthers are not dehiscent. It can be concluded that male sterility is characterised by failure to produce functional pollen grains, an event that would be associated with the persistence of tapetal cells. Ultrastructural analysis clearly shows the difference in tapetal cells between the two flower morphs.


HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 945-950
Author(s):  
Weiping Zhong ◽  
Zhoujun Zhu ◽  
Fen Ouyang ◽  
Qi Qiu ◽  
Xiaoming Fan ◽  
...  

The normal development of anthers and the formation of functional pollen are the prerequisites for successful pollination and fertilization. In this study, we observed dynamic changes in inflorescence and anther development in the chinquapin (Castanea henryi) using stereomicroscopy, light microscopy, and transmission electron microscopy. We found that cytokinesis during meiosis in microsporocytes was of the simultaneous type, and that the tetrads were mainly tetrahedral. Mature pollen grains contained two cells with three germ pores. The anther wall was of the basic type and composed of epidermis, endothecium, middle layers, and tapetum. Mature anthers had no middle layer and tapetum. The tapetum was of the glandular type. At the early microspore stage, a large number of starch granules appeared in the endothecium, which was deformed at the late microspore stage. Lipid droplets appeared in tapetum during the early microspore stage, and a few lipid droplets were still found during tapetum degeneration. The mature pollen accumulated a large amount of starch and lipids. These findings demonstrated that the anther wall provides nutrients and protection for pollen development. There is relatively stable correspondence between the external morphological characteristics of male flowers and internal structure of anther development.


2012 ◽  
Vol 4 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Özlem AYTÜRK ◽  
Meral ÜNAL

Male (staminat) flower development, being separated in 8 phases, was investigated in Laurus nobilis (Lauraceae) through the usage of histological sections and scanning electron microscopy (SEM) analysis. Flower development starts when apical meristem differentiates, followed by the conversion of this structure to floral meristem. Initial development phases comprise incidents similar to the ones of the female flower. 4 tepals and 8-10 stamens primordia develop through floral meristem in turn. In early stages of the development, sexual dimorphism occurs when the carpel primordium arrests. Filaments carry 2 nectaries in stamens which arise in 3 whorls. Anther wall consists of epidermis, endothecium, 2 or 3 middle layers and a single-layered glandular tapetum. Anthers are bisporangiate. Meiotic division is regular in pollen mother cells, and pollen grains do not contain aperture. Beside the pollen scattered individually within the pollen sacs, groups which contain some pollen tied to each other are rarely observed, as well. Pollen grains seldom germinate within microsporangium. Anthers are opened with 2 valves which widen from the base through the top. Accumulation of polysaccharides, lipids and proteins were identified by histochemical methods in stamens. These organic substances are greater within and around the vascular bundle compared to other tissues.


1963 ◽  
Vol 11 (2) ◽  
pp. 152 ◽  
Author(s):  
G Want

In Wahlenbergia bicolor, the anther wall is composed of four layers: epidermis, endothecium, middle layer, and tapetum. Wall formation and microsporogenesis are described, and the pollen grains are shed at the two-celled condition. The ovules are tenuinucellate, with a hypodermal archesporial cell which develops directly as the megaspore mother cell. Megasporogenesis is normal, and a monosporic eight-nucleate embryo sac of the most common Polygonum type develops from the chalazal megaspore. The antipodals degenerate before fertilization. The development of the embryo is of the solanad type. A suspected case of polyembryony was observed. The endosperm is cellular from its inception, and so conforms to the Codonopsis type. A micropylar and a chalazal haustoriurn, both consisting of two uninucleate cells, are formed from the endosperm. Comparative studies were made with a known but as yet undescribed coastal species of Wahlenbergia, and no differences were found.


1968 ◽  
Vol 16 (1) ◽  
pp. 19 ◽  
Author(s):  
GL Davis

Flower buds are first recognizable in late December at the commencement of new growth, and the deciduous bracts enclosing each cyme are shed about 3 weeks later. The buds increase rapidly in size, but anthesis does not occur until the end of September and the seeds are not shed from the capsules until the following August. The development of the double operculum and the floral parts is traced. Archesporal tissue is differentiated in the anthers in late February but ovule primordia are not formed until the end of March, by which time the stamens have reached their full size and anther wall formation is well advanced. In each bud events in the anthers and ovules are broadly comparable, but variation in the stages of development occurs between buds on the same branch. Meiosis takes place during the winter months, and embryo sac development follows the Polygonum type. The components of the egg apparatus undergo a threefold increase in size after their formation and, whereas the egg contains little cytoplasm, the synergids become densely cytoplasmic and laterally hooked. The pollen grains are two-celled when they are shed through the slits at the apices of the anthers. A comparison is made of the embryology of E. melliodora and that of species cultivated in Italy and the Black Sea area of the Soviet Union.


Sign in / Sign up

Export Citation Format

Share Document