scholarly journals Assessment of in vitro antifungal activity of preparation ''fin Candimis'' against Candida strains

2013 ◽  
Vol 47 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Anna Głowacka ◽  
Anna Bednarek-Gejo ◽  
Danuta Trojanowska ◽  
Mariusz Mianowany ◽  
Alicja Budak

The aim of the study was to assess the antifungal activity of preparation „fin Candimis” (oregano essential oil) against yeast-like strains belonging to the genus <em>Candida</em>. During the investigation, there were used up nine <em>Candida albicans</em> strains and ten C. glabrata strains isolated from different clinical material, along with one <em>C. albicans</em> demonstration strain ATCC 90028. The oregano essential oil, utilized in the study, was obtained from fresh leaves of <em>Origanum vulgare</em> L. and bore a trade name „fin Candimis”. According to data yielded by its manufacturer, concentration of pure oregano essential oil in preparation „fin Candimis” totals up to 210 mg/ml. The susceptibility of the <em>Candida</em> strains to preparation „fin Candimis” was assessed by means of the disc-diffusion method, upon the Sabouraud solid medium (after a 24-hour incubation of the cultures at temperature of 37 degrees centigrade); the oregano essential oil had been diluted in 1 ml of DMSO, according to the geometrical progression. A measure of the antifungal activity of preparation „fin Candimis” was the minimal inhibitory concentration (MIC), in terms of the fungus growth. Preparation „fin Candimis” is capable of being applied in the prevention and treatment of candidiasis – alone, or as a natural adjunctive agent. The <em>C. albicans</em> strains are more susceptible to preparation „fin Candimis” in comparison to the <em>C. glabrata</em> ones.




2018 ◽  
Vol 49 (4) ◽  
pp. 929-935 ◽  
Author(s):  
Carolina M. Bedoya-Serna ◽  
Gustavo C. Dacanal ◽  
Andrezza M. Fernandes ◽  
Samantha C. Pinho


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Tamirat Bekele Beressa ◽  
Serawit Deyno ◽  
Paul E. Alele

Background. Echinops kebericho is an endemic medicinal plant in Ethiopia widely used in the treatment of infectious and noninfectious diseases. Essential oils are known for their antibacterial, antifungal, antiviral, insecticidal, and antioxidant properties. This study evaluated the antifungal activity of essential oil from E. kebericho against four common pathogenic fungi and two standard strains. Methods. The essential oil was obtained by hydrodistillation. The antifungal screening was done by agar well diffusion method. Minimal inhibitory concentrations (MICs) were determined by broth microdilution. Minimal fungicidal concentrations (MFCs) were determined by subculturing fungal strains with no visible growth onto a Sabouraud dextrose agar (SDA) plate. Results. Candida albicans and Cryptococcus neoformans were highly sensitive while Aspergillus flavus did not show sensitivity up to 1 mg/ml of essential oil; MICs ranged from 0.083 mg/ml to 0.208 mg/ml. Concentration and fungal species showed significant dose-dependent associations ( p < 0.0001 ) with antifungal activity. The MICs of essential oil were comparable to those of the standard drug (fluconazole) against C. glabrata and C. krusei. The lowest MFC of the essential oil was observed against Candida parapsilosis (0.145 mg/ml) while the highest MFC was against Candida krusei (0.667 mg/ml). Conclusion. Echinops kebericho essential oil showed noteworthy antifungal activity against Cryptococcus neoformans, Candida albicans, and Candida glabrata and could be a potential candidate for further antifungal drug development.



2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Giovanna Pesavento ◽  
Valentina Maggini ◽  
Isabel Maida ◽  
Antonella Lo Nostro ◽  
Carmela Calonico ◽  
...  

Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Antibiotic susceptibility of each strain was previously tested by the standard disk diffusion method. Most strains were resistant to multiple antibiotics and could be defined as multi-drug-resistant (MDR). The antibacterial activity of O. vulgare EO (OEO) against a panel of 59 bacterial strains was evaluated, with MIC and MBC determined at 24, 48 and 72 hours by a microdilution method. The OEO was effective against all tested strains, although to a different extent. The MBC and MIC of OEO for S. aureus strains were either lower or equal to 0.50%, v/v, for A. xylosoxidans strains were lower or equal to 1% and 0.50%, v/v, respectively; and for S. maltophilia strains were lower or equal to 0.25%, v/v. The results from this study suggest that OEO might exert a role as an antimicrobial in the treatment of CF infections.



2008 ◽  
Vol 3 (9) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Mehrdad Iranshahi ◽  
Abdolmajid Fata ◽  
Bahareh Emami ◽  
Bibi Mohadeseh Jalalzadeh Shahri ◽  
Bibi Sedigheh Fazly Bazzaz

The increase in dermatophytoses and the fact that some patients do not respond well to therapy make it necessary to find new antifungal agents. As part of our ongoing studies on medicinal plants from Iran, we studied antidermatophytic activities of Ferula latisecta essential oil, which had shown considerable antifungal activity in preliminary antimicrobial screening. Antifungal activity was evaluated by determination of MIC values using the agar dilution method on type strains of Candida albicans and dermatophytes. The composition of the oil was characterized by GC and GC/MS analyses. The essential oil was rich in polysulfides (75.2%) and exhibited good activity against Trichophyton rubrum and T. verrucosom for about three weeks, with a MIC value 96 μg/mL. The oil showed antifungal activity, especially against dermatophytes, and the activity is probably related to the sulfur-containing components of the oil. This study has identified that the polysulfides-rich essential oil of Ferula latisecta fruits has activity against a range of human pathogenic dermatophytes, justifying future clinical trials to validate its use as a therapeutic alternative for dermatophytosis.





2018 ◽  
Vol 30 (4) ◽  
pp. 466-471 ◽  
Author(s):  
Alphonse Sokamte Tegang ◽  
Thierry Marcel Ntsamo Beumo ◽  
Pierre Michel Jazet Dongmo ◽  
Leopold Tatsadjieu Ngoune


2013 ◽  
Vol 7 (20) ◽  
pp. 2245-2250 ◽  
Author(s):  
Brum Cleff Marlete ◽  
Madrid Isabel ◽  
Raquel Meinerz Ana ◽  
Carlos Arauacute jo Meireles Maacute rio ◽  
Roberto Braga de Mello Joatilde o ◽  
...  


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9626
Author(s):  
Huiyu Hou ◽  
Xueying Zhang ◽  
Te Zhao ◽  
Lin Zhou

Background Botrytis cinerea causes serious gray mold disease in many plants. This pathogen has developed resistance to many fungicides. Thus, it has become necessary to look for new safe yet effective compounds against B. cinerea. Methods Essential oils (EOs) from 17 plant species were assayed against B. cinerea, of which Origanum vulgare essential oil (OVEO) showed strong antifungal activity, and accordingly its main components were detected by GC/MS. Further study was conducted on the effects of OVEO, carvacrol and thymol in vitro on mycelium growth and spore germination, mycelium morphology, leakages of cytoplasmic contents, mitochondrial injury and accumulation of reactive oxygen species (ROS) of B. cinerea. The control efficacies of OVEO, carvacrol and thymol on tomato gray mold were evaluated in vivo. Results Of all the 17 plant EOs tested, Cinnamomum cassia, Litsea cubeba var. formosana and O. vulgare EOs had the best inhibitory effect on B. cinerea, with 0.5 mg/mL completely inhibiting the mycelium growth of B. cinerea. Twenty-one different compounds of OVEO were identified by gas chromatography–mass spectrometry, and the main chemical components were carvacrol (89.98%), β-caryophyllene (3.34%), thymol (2.39%), α-humulene (1.38%) and 1-methyl-2-propan-2-ylbenzene isopropyl benzene (1.36%). In vitro experiment showed EC50 values of OVEO, carvacrol and thymol were 140.04, 9.09 and 21.32 μg/mL, respectively. Carvacrol and thymol completely inhibited the spore germination of B. cinerea at the concentration of 300 μg/mL while the inhibition rate of OVEO was 80.03%. EC50 of carvacrol and thymol have significantly (P < 0.05) reduced the fresh and dry weight of mycelia. The collapse and damage on B. cinerea mycelia treated with 40 μg/mL of carvacrol and thymol was examined by scanning electron microscope (SEM). Through extracellular conductivity test and fluorescence microscope observation, it was found that carvacrol and thymol led to increase the permeability of target cells, the destruction of mitochondrial membrane and ROS accumulation. In vivo conditions, 1000 μg/mL carvacrol had the best protective and therapeutic effects on tomato gray mold (77.98% and 28.04%, respectively), and the protective effect was significantly higher than that of 400 μg/mL pyrimethanil (43.15%). While the therapeutic and protective effects of 1,000 μg/mL OVEO and thymol were comparable to chemical control. Conclusions OVEO showed moderate antifungal activity, whereas its main components carvacrol and thymol have great application potential as natural fungicides or lead compounds for commercial fungicides in preventing and controlling plant diseases caused by B. cinerea.



Sign in / Sign up

Export Citation Format

Share Document