Calibration of supervised learning models using model parameters optimization algorithms

Author(s):  
Jadran Berbić ◽  
Eva Ocvirk ◽  
Dijana Oskoruš ◽  
Tatjana Vujnović
2021 ◽  
Author(s):  
Melvyn Sim ◽  
Long Zhao ◽  
Minglong Zhou

2020 ◽  
pp. 016555152091003
Author(s):  
Gyeong Taek Lee ◽  
Chang Ouk Kim ◽  
Min Song

Sentiment analysis plays an important role in understanding individual opinions expressed in websites such as social media and product review sites. The common approaches to sentiment analysis use the sentiments carried by words that express opinions and are based on either supervised or unsupervised learning techniques. The unsupervised learning approach builds a word-sentiment dictionary, but it requires lengthy time periods and high costs to build a reliable dictionary. The supervised learning approach uses machine learning models to learn the sentiment scores of words; however, training a classifier model requires large amounts of labelled text data to achieve a good performance. In this article, we propose a semisupervised approach that performs well despite having only small amounts of labelled data available for training. The proposed method builds a base sentiment dictionary from a small training dataset using a lasso-based ensemble model with minimal human effort. The scores of words not in the training dataset are estimated using an adaptive instance-based learning model. In a pretrained word2vec model space, the sentiment values of the words in the dictionary are propagated to the words that did not exist in the training dataset. Through two experiments, we demonstrate that the performance of the proposed method is comparable to that of supervised learning models trained on large datasets.


2019 ◽  
Vol 123 (16) ◽  
Author(s):  
Silvio Franz ◽  
Sungmin Hwang ◽  
Pierfrancesco Urbani

2015 ◽  
Vol 77 (28) ◽  
Author(s):  
Siti Marhainis Othman ◽  
Mohd Fua’ad Rahmat ◽  
Sahazati Md. Rozali ◽  
Sazilah Salleh

Electro-hydraulic actuator (EHA) system inherently suffers from uncertainties, nonlinearities and time- varying in its model parameters which cause the modeling and controller designs are more complicated. Proportional Integral Derivative (PID) control scheme has been proposed and the main problem with its application is to tune the parameters to its optimum values. This study will look into an optimization of PID parameters using particle swarm optimization (PSO). Simulation study has been done in Matlab and Simulink. 


Sign in / Sign up

Export Citation Format

Share Document