2016 ◽  
Vol 8 (2) ◽  
pp. 609-615
Author(s):  
S. Janapriya ◽  
S. Santhana Bosu ◽  
Balaji Kannan ◽  
S. Kokilavani

Drought is universally acknowledged as a phenomenon associated with scarcity of water. Drought characterization is essential for drought management operations. Using drought indices is a pragmatic way to assimilate large amounts of data into quantitative information that can be used in applications such as drought forecasting, declaring drought levels, contingency planning and impact assessment. Using monthly mean precipitation data for a period of 1982-2012 from 12 raingauge stations in the Manjalar sub-basin of Vaigai using Standardized Precipitation Index (SPI) is produced for the drought analysis with the time scale of 3 months (SPI-3), 6 months (SPI-6) and 12 months (SPI-12) as they are applicable for agriculture and hydrological aspects, respectively. It was observed that the basin experienced frequent droughts for all months of the year. The highest percentage of occurrence of drought was observed in the month of July (15.3), May (15.4) and August (15.6) at SPI-3, SPI-6 and SPI-12 respectively. On an average we observed 32.6, 8.6, 5.6 and 2.3 percentages of drought occurred by mild, moderate, severe and extreme drought respectively with respect to SPI-12. The results showed that mild droughts occur most frequently and extreme droughts occur least frequently and the basin suffered severe drought during the year of 1985, 2004 and 2006. The central and south eastern parts of the basin had more potential sensitivity to the droughts in comparison with the other areas of the basin.


2020 ◽  
Vol 42 (3) ◽  
pp. 293-303
Author(s):  
VALERIY BONDAREV

The theoretical and methodological basis of the systems hierarchical spatial and temporal analysis of a drainage basin, which addresses the problems of effective management in socio-natural systems of different ranks, is considered. It is proposed to distinguish 9 orders of forms that are relevant to the analysis of drainage basins, where the first level is represented by individual aggregates and particles, and the last - by basins of large and the largest rivers. As part of the allocation of geological, historical and modern time intervals, the specificity of the implementation of processes in basins of different scales from changing states, through functioning to evolution is demonstrated. The interrelation of conditions and factors that determine the processes occurring within the drainage basins is revealed. It is shown that a specific combination of conditions and factors that determine processes in the drainage basin is associated with the hierarchy of the objects under consideration, i.e. the choice of a spatial-temporal hierarchical level is crucial for the organization of study within drainage basins. At one hierarchical level, some phenomenon can be considered as a factor, and at another - as a condition. For example, tectonic processes can be considered as an active factor in the evolution of large river basins in the geological perspective, but for small drainage basin, this is already a conservative background condition. It is shown that at the historical time the anthropogenic factor often comes to the fore, with the appearance of which in the functioning of the drainage basin, there is a need to take into account the entire complex of socio-environmental problems that can affect the sustainable state of various territories, especially in the field of water and land use. Hierarchical levels of managing subjects are identified, which are primarily responsible for effective management at the appropriate hierarchical level of the organization of the socio-natural system within the catchment area, starting from an individual to humankind as a whole.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


Sign in / Sign up

Export Citation Format

Share Document