DEVELOPMENT OF THE FINE AND ULTRAFINE PARTICLES DURING THE BIOMASS COMBUSTION AND POSSIBLE MEASURE OF THEIR DECREASING

Author(s):  
Stela Pavlikova
2015 ◽  
Vol 238 (2) ◽  
pp. S219
Author(s):  
C.L. Galli ◽  
V. Galbiati ◽  
M. Marinovich ◽  
S. Ozgen ◽  
G. Lonati ◽  
...  

2019 ◽  
Vol 20 (20) ◽  
pp. 4992 ◽  
Author(s):  
Corsini ◽  
Marinovich ◽  
Vecchi

Biomass burning is considered an important source of indoor and outdoor air pollutants worldwide. Due to competitive costs and climate change sustainability compared to fossil fuels, biomass combustion for residential heating is increasing and expected to become the major source of primary particulate matter emission over the next 5–15 years. The understanding of health effects and measures necessary to reduce biomass emissions of harmful compounds is mandatory to protect public health. The intent of this review is to report available data on ultrafine particles (UFPs, i.e., particles with diameter smaller than 100 nm) emitted by residential biomass combustion and their effects on human health (in vitro and in vivo studies). Indeed, as far as we know, papers focusing specifically on UFPs originating from residential biomass combustion and their impact on human health are still lacking.


2018 ◽  
Vol 168 ◽  
pp. 07011 ◽  
Author(s):  
Ján Poláčik ◽  
Jiří Pospíšil ◽  
Ladislav Šnajdárek ◽  
Tomáš Sitek

Fine particles generated from laboratory biomass combustion are discussed in this study. The approach combines the thermogravimetric analysis during thermal decomposition of beech wood sample with detailed monitoring of the size distribution of fine particles produced. Thermogravimetric analysis (TGA) allows monitoring the exact temperature influence of a small fuel sample (wood) according to the desired schedule. The cool aerosol stream leaving TGA enters a Scanning Mobility Particle Sizer (SMPS) where the particle size fractions are separated. The monodisperse aerosol is counted by the condensation particle counter (CPC). The parametrical study was carried out to assess the influence of composition, size and surface of the wood sample on the production and size distribution of ultrafine particles


2015 ◽  
Vol 238 (2) ◽  
pp. S315 ◽  
Author(s):  
L. Capasso ◽  
M. Gualtieri ◽  
E. Longhin ◽  
L. Capasso ◽  
R. Bengalli ◽  
...  

Author(s):  
Chihiro Kaito ◽  
Yoshio Saito

The direct evaporation of metallic oxides or sulfides does not always given the same compounds with starting material, i.e. decomposition took place. Since the controll of the sulfur or selenium vapors was difficult, a similar production method for oxide particles could not be used for preparation of such compounds in spite of increasing interest in the fields of material science, astrophysics and mineralogy. In the present paper, copper metal was evaporated from a molybdenum silicide heater which was proposed by us to produce the ultra-fine particles in reactive gas as shown schematically in Figure 1. Typical smoke by this method in Ar gas at a pressure of 13 kPa is shown in Figure 2. Since the temperature at a location of a few mm below the heater, maintained at 1400° C , were a few hundred degrees centigrade, the selenium powder in a quartz boat was evaporated at atmospheric temperature just below the heater. The copper vapor that evaporated from the heater was mixed with the stream of selenium vapor,and selenide was formed near the boat. If then condensed by rapid cooling due to the collision with inert gas, thus forming smoke similar to that from the metallic sulfide formation. Particles were collected and studied by a Hitachi H-800 electron microscope.Figure 3 shows typical EM images of the produced copper selenide particles. The morphology was different by the crystal structure, i.e. round shaped plate (CuSe;hexagona1 a=0.39,C=l.723 nm) ,definite shaped p1 ate(Cu5Se4;Orthorhombic;a=0.8227 , b=1.1982 , c=0.641 nm) and a tetrahedron(Cu1.8Se; cubic a=0.5739 nm). In the case of compound ultrafine particles there have been no observation for the particles of the tetrahedron shape. Since the crystal structure of Cu1.8Se is the anti-f1uorite structure, there has no polarity.


Author(s):  
Jun Liu ◽  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Ultrafine particles usually have unique physical properties. This study illustrates how the lattice defects and interfacial structures between particles are related to the size of ultrafine crystalline gold particles.Colloidal gold particles were produced by reducing gold chloride with sodium citrate at 100°C. In this process, particle size can be controlled by changing the concentration of the reactant. TEM samples are prepared by transferring a small amount of solution onto a thin (5 nm) carbon film which is suspended on a copper grid. In this work, all experiments were performed with Philips 430T at 300 kV.With controlled seeded growth, particles of different sizes are produced, as shown in Figure 1. By a careful examination, it can be resolved that very small particles have lattice defects with complex interfaces. Some typical particle structures include multiple twins, resulting in a five-fold symmetry bicrystals, and highly disordered regions. Many particles are too complex to be described by simple models.


2004 ◽  
Vol 38 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Chandan Misra ◽  
Philip M. Fine ◽  
Manisha Singh ◽  
Constantinos Sioutas
Keyword(s):  

2012 ◽  
Vol 11 (9) ◽  
pp. 1555-1560 ◽  
Author(s):  
Ionel Pisa ◽  
Gheorghe Lazaroiu ◽  
Corina Radulescu ◽  
Lucian Mihaescu

Sign in / Sign up

Export Citation Format

Share Document