scholarly journals Biorelevant dissolution of candesartan cilexetil

ADMET & DMPK ◽  
2017 ◽  
Vol 5 (1) ◽  
pp. 39 ◽  
Author(s):  
Lucie Gruberová ◽  
Bohumil Kratochvil

<p class="ADMETabstracttext">The choice of an appropriate medium for dissolution tests is an essential step during a dosage form development. The adequate design of dissolution testing enables forecasting in vivo behavior of drug formulation. Biorelevant media were developed for this purpose because dissolution media described in the International Pharmacopoeia are not thoroughly suitable. Therefore, we carried out solubility and dissolution tests in biorelevant media and we compared the results with data measured in compendial dissolution media. A shake-flask method and standard paddle apparatus were used. The concentration was measured by a UV-Vis spectrophotometer. An oral solid dosage form with poorly soluble drug candesartan cilexetil was tested. Significant differences in the solubility and dissolution profiles of candesartan cilexetil were observed. The study offers the overview of compendial and biorelevant media simulating fasted state that can be analyzed by a spectrophotometric technique.</p>

2009 ◽  
Vol 37 (3-4) ◽  
pp. 434-441 ◽  
Author(s):  
Ekarat Jantratid ◽  
Vincenzo De Maio ◽  
Emanuela Ronda ◽  
Valentina Mattavelli ◽  
Maria Vertzoni ◽  
...  

2018 ◽  
Vol 4 (4) ◽  
pp. 523-531
Author(s):  
Hina Mumtaz ◽  
Muhammad Asim Farooq ◽  
Zainab Batool ◽  
Anam Ahsan ◽  
Ashikujaman Syed

The main purpose of development pharmaceutical dosage form is to find out the in vivo and in vitro behavior of dosage form. This challenge is overcome by implementation of in-vivo and in-vitro correlation. Application of this technique is economical and time saving in dosage form development. It shortens the period of development dosage form as well as improves product quality. IVIVC reduce the experimental study on human because IVIVC involves the in vivo relevant media utilization in vitro specifications. The key goal of IVIVC is to serve as alternate for in vivo bioavailability studies and serve as justification for bio waivers. IVIVC follows the specifications and relevant quality control parameters that lead to improvement in pharmaceutical dosage form development in short period of time. Recently in-vivo in-vitro correlation (IVIVC) has found application to predict the pharmacokinetic behaviour of pharmaceutical preparations. It has emerged as a reliable tool to find the mode of absorption of several dosage forms. It is used to correlate the in-vitro dissolution with in vivo pharmacokinetic profile. IVIVC made use to predict the bioavailability of the drug of particular dosage form. IVIVC is satisfactory for the therapeutic release profile specifications of the formulation. IVIVC model has capability to predict plasma drug concentration from in vitro dissolution media.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hardik Rana ◽  
Rushikesh Chaudhari ◽  
Vaishali Thakkar ◽  
Tejal Gandhi

Background: The better control of the drug release with immediate effect is the major concern to achieve better therapeutic action and patient compliance. The failure of the solid dispersion complex during storage as well as in-vivo is another concern for the oral solid dosage form. Objective: The prime objective of the present study was to optimize the biphasic minitablet incorporating quality by design approach using the combination of waxy erodible and water-impermeable excipients. Exploration of Soluplus as a precipitation inhibitor and Dexolve as a solubility enhancer in oral solid dosage form was the secondary objective. Methods: The drug-Excipient compatibility study was assessed by FTIR. Clozapine was chosen as a model drug that has poor aqueous solubility. The complex was formulated using B-cyclodextrin or HP B-CD or Dexolve by kneading method. The screening of solubility enhancers and their amount were performed based on phase solubility study. The precipitation inhibitor was screened as per the parachute effect study. Immediate release minitablets were formulated using a direct compression method using different disintegrating agents. The IR minitablets were evaluated for different evaluation parameters. The sustained release minitablets was formulated by hot-melt granulation technique incorporating the Precirol ATO 5 as a waxy excipient and ethyl cellulose as water impermeable excipient. The SR minitablet was optimized using a central composite design. The amount of Precirol ATO 5 and ethyl cellulose were chosen as independent variables and % drug release at 1, 6, and 10 h was selected as responses. The designed batches were evaluated for different pre and post compressional parameters. The IR and SR minitablets were filled in a capsule as per dose requirement and evaluated for in-vitro drug release. The in-vivo plasma concentration was predicted using the Back calculation of the Wagner – Nelson approach. Results: Drug – Excipient study revealed that no significant interaction was observed. Dexolve was screened as a solubility enhancer for the improvement of the solubility of clozapine. The Soluplus was chosen as a precipitation inhibitor from the parachute effect study. The immediate-release tablet was formulated using Prosolv EASYtab SP yield less disintegration time with better flowability. The sustained release mini-tablet was formulated using Precirol ATO 5 and ethyl cellulose. Two-dimensional and three-dimensional plots were revealed the significant effect of the amount of Precirol ATO 5 and ethyl cellulose. The overlay plot locates the optimized region. The in-vitro drug release study revealed the desired drug release of the final combined formulation. The in-vivo plasma concentration-time confirms the drug release up to 12h. Conclusion: The biphasic mini-tablets were formulated successfully for better control of drug release leads to high patient compliance. The use of soluplus as a precipitation inhibitor is explored in the oral solid dosage form for a poorly aqueous drug. Prosolv EASYtab SP was incorporated in the formulation as super disintegrant. The amount of Precirol ATO 5 and ethyl cellulose had a significant effect on drug release in sustained-release minitablet. The approach can be useful in the industry.


2017 ◽  
Vol 6 (2) ◽  
pp. 184-191 ◽  
Author(s):  
Mohammed Elmowafy ◽  
Ahmed Samy ◽  
Abdelaziz E. Abdelaziz ◽  
Khaled Shalaby ◽  
Ayman Salama ◽  
...  

2018 ◽  
Vol 10 (6) ◽  
pp. 181
Author(s):  
Arif Budiman ◽  
Sandra Megantara ◽  
Putri Raraswati ◽  
Tazyinul Qoriah

Objective: The aim of this study was to develop a solid dosage form of glibenclamide with increasing the solubility properties of glibenclamide with cocrystallization method.Methods: Virtual screening was performed to investigate the interaction between glibenclamide and a co-former. Saccharin, the selected co-former, then co-crystallized with glibenclamide with equimolar ratios of 1:1 and 1:2 using the solvent evaporation method. Further characterization was performed using an infra-red (IR) spectrophotometer, differential scanning calorimetry (DSC), and powder x-ray diffraction (PXRD).Results: Co-crystals of 1:2 equimolar ratio were more highly soluble compared to pure glibenclamide (30-fold for 12 h and 24-fold for 24 h). The dissolution rate had also increased from 46.838% of pure glibenclamide to 77.655% of glibenclamide co-crystal in 60 min. There was no chemical reaction observed during the co-crystallization process based on the IR spectrum. However, there was a new peak in the X-Ray diffractogram and a reduction of melting point in the DSC curve, indicating the formation of co-crystals.Conclusion: The optimal co-crystal ratio of glibenclamide-saccharin was found to be 1:2, which was successful in improving the solubility of glibenclamide.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Silvina G. Castro ◽  
Alicia Dib ◽  
Gonzalo Suarez ◽  
Daniel Allemandi ◽  
Carlos Lanusse ◽  
...  

The main objectives of this study were (a) to evaluate thein vitroperformance of the rapid disintegration tablets as a way to improve the solid dispersions and (b) to study thein vivopharmacokinetics of the albendazole modified formulation in dogs. Rapid disintegration of tablets seems to be a key factor for efficiency of solid dispersions with regard to improvement of the albendazole bioavailability. Thein vivoassays performed on dogs showed a marked increase in drug plasma exposure when albendazole was given in solid dispersions incorporated into rapid disintegration tablets compared with conventional solid dosage form.


2016 ◽  
Vol 105 ◽  
pp. 193-202 ◽  
Author(s):  
Cord J. Andreas ◽  
Irena Tomaszewska ◽  
Uwe Muenster ◽  
Dorina van der Mey ◽  
Wolfgang Mueck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document