IDENTIFICATION OF FRICTION CONDITIONS IN HUMAN JOINTS

Tribologia ◽  
2017 ◽  
Vol 273 (3) ◽  
pp. 127-136
Author(s):  
Andrzej RYNIEWICZ ◽  
Anna RYNIEWICZ

The purpose of the paper is to explain the friction conditions and the lubrication mechanism in healthy joints, based on rheological tests of synovial fluid and the identification of structures and the shape of articular surfaces. The tests were performed on cadaver preparations of large lower limp joints: hip, knee, and ankle joints. The analysis included combined experimental activities with the use of modern research and test techniques in the area of viscosity and microscopy as well as diagnostic imaging, image analysis, modelling, and FEM simulation. The tests performed allowed for the analysis of lubrication process which can be described as bioelastohydrodynamic lubrication (BEHL). The most important are viscoelasticity properties of the synovial fluid and the process whereby the external load is taken over by the pressure generated by a set of oil wedges of synovial fluid formed by naturally wavy articular surface. The multi-layer structure of the joints is characterised by variable wavy shape of cartilaginous surfaces and of bone tissue and by the variable wavy thickness of the cartilage.

Author(s):  
H Higaki ◽  
T Murakami ◽  
Y Nakanishi ◽  
H Miura ◽  
T Mawatari ◽  
...  

Two kinds of friction tests were conducted to investigate the lubricating effect of the injection of amphiphilies on the osteoarthritic joint. The effects of the addition of Lα-dipalmitoyl phosphatidylcholine (Lα-DPPC) riposomes and γ-globulin in a saline solution of sodium hyaluronate (HA) were evaluated through pendulum friction tests. The frictional characteristics of pig shoulder joints were confirmed to depend on the viscosity of the lubricants only in the physiologically low load condition and in the condition immediately after loading. Detergent (polyoxyethylene p-t-octylphenyl ether) was successfully used to remove adsorbed films from the articular surfaces. The friction coefficient of natural synovial joints was significantly increased in a mode of mixed lubrication with the HA solution of 0.2 g/dl by the treatment of the surface with the detergent. The addition of Lα-DPPC riposomes or y-globulin significantly improved the boundary lubricating ability of the articular surfaces treated with the detergent, depending on the quantity of those additives. It appears that the Lα-DPPC riposomes and γ-globulin can form protective films on the articular surfaces like a biomembrane. Moreover, the reciprocating frictional behaviour in sliding pairs of pig articular cartilages and glass plates was studied in order to elucidate the tribological role of those constituents in the boundary lubricating film on the articular surface. Pig synovial fluid and water solutions of HA were used as lubricants. The synovial fluid had superior lubricating ability compared to the HA solution of equivalent viscosity under a physiologically high load condition. This fact seems to be responsible for the boundary lubricating ability of constituents other than hyaluronic acid. Langmuir-Blodgett (LB) films of Lα-DPPC on the glass plate were kept at a low and stable friction coefficient, depending on the number of film layers. In conditions of mixed films with Lα-DPPC and γ-globulin, the frictional behaviour was improved by increasing the quantity of γ-globulin. A model is proposed in which the effective adsorbed films are composed of proteins, phospholipids and other conjugated constituents on the articular surfaces to be accurate in describing the boundary lubricating mechanism. The mechanism is controlled by hydrophobic groups in those amphiphilies.


Author(s):  
J Q Yao ◽  
A Unsworth

The asperity lubrication in human joints is examined in the present paper, with particular reference to the tertiary undulation with wavelengths of around 20–45 μm. It was found that, under dynamic physiological loading conditions, the secondary waviness of the cartilaginous surface (typically 0.5 mm wavelength) could be effectively flattened to sustain a fluid film of 0.1–0.3 μm thick, while the tertiary waviness could be squashed to sustain a much thinner fluid film of 0.01 μm (10 nm) thick with normal synovial fluid as the lubricant. The calculated film thickness for the tertiary undulation was less than 5 nm when the ankle joint was lubricated by Ringer's solution or pathological synovial fluids, or when only quasi-static loading conditions were considered, while a sufficiently thick fluid film could still be formed when the secondary undulations were considered alone. It was thus suggested that the fluid film lubrication mechanism was operative for human joints with normal synovial fluid as the lubricant under physiological dynamic loading conditions and the mixed lubrication mechanism could take over when static loading conditions prevailed or when watery lubricants (n ≈ 0.001 Pas) were used.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
David F. James ◽  
Garret M. Fick ◽  
W. Douglas Baines

A new mechanism of physiological lubrication is proposed to explain how low-viscosity synovial fluid prevents articular surfaces from contacting and wearing. The new mechanism is based on the hypothesis that the hyaluronic acid chains in synovial fluid bind to the cartilage surfaces through electrostatic charges, with the phospholipid layer on an articular surface supplying the necessary attractive charges. The stationary hyaluronic acid network causes a large hydrodynamic resistance to outward flow from the gap. To determine the effectiveness of the network in preventing contact, squeeze-film flow between two incompressible, permeable disks is analyzed when a constant load is suddenly applied, and the solvent—synovial fluid minus the hyaluronic acid—escapes through the network and through the permeable disks. The analysis yields the approximate time for the gap distance to decrease to asperity size. For realistic physiological parameters, the time for the surfaces to contact is a minimum of several minutes and likely much longer. The role of albumin in the synovial fluid is included because the large protein molecules are trapped by the small openings in the hyaluronic acid network, which increases the flow resistance of the network and thereby delays contact of the surfaces.


2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Chun-Hao Tsai ◽  
Chao-Ju Chen ◽  
Chi-Li Gong ◽  
Shan-Chi Liu ◽  
Po-Chun Chen ◽  
...  

AbstractAngiogenesis is a critical process in the formation of new capillaries and a key participant in rheumatoid arthritis (RA) pathogenesis. The chemokine (C-X-C motif) ligand 13 (CXCL13) plays important roles in several cellular functions such as infiltration, migration, and motility. We report significantly higher levels of CXCL13 expression in collagen-induced arthritis (CIA) mice compared with controls and also in synovial fluid from RA patients compared with human osteoarthritis (OA) samples. RA synovial fluid increased endothelial progenitor cell (EPC) homing and angiogenesis, which was blocked by the CXCL13 antibody. By interacting with the CXCR5 receptor, CXCL13 facilitated vascular endothelial growth factor (VEGF) expression and angiogenesis in EPC through the PLC, MEK, and AP-1 signaling pathways. Importantly, infection with CXCL13 short hairpin RNA (shRNA) mitigated EPC homing and angiogenesis, articular swelling, and cartilage erosion in ankle joints of mice with CIA. CXCL13 is therefore a novel therapeutic target for RA.


2021 ◽  
Vol 11 (6) ◽  
pp. 137-142
Author(s):  
Mykhailo Hnatiuk ◽  
Lesia Rubas

Aim: to study morphometrically the peculiarities of remodeling of chondrocytes of the articular surfaces of the temporomandibular joint in hyperglycemia.Materials and methods: Quantitative morphological methods were used to study diameters of chondrocytes and their nuclei, nuclear-cytoplasmic relationship in these cells, relative volume of damaged chondrocytes, intercellular-chondrocytic relationship in mature chondrocytes of the articular surfaces of the temporomandibular joint of 45 laboratory mature white male rats with simulated diabetes.Results: A comprehensive analysis of the morphometric parameters presented in the article showed that they did not differ in the articular surfaces of the temporal fossa and mandibular head of the intact temporomandibular joint. The expressed structural changes of chondrocytes were revealed at a monthly and a two-month diabetic arthropathy of this joint.Conclusions: Proceeded studies and obtained results suggest that prolonged hyperglycemia leads to diabetic arthropathy of the TMJ, which is characterized by atrophy of chondrocytes, violation of nuclear-cytoplasmic relationships, an increase in the relative volume of damaged chondrocytes and volume of intercellular substance. The detected changes in quantitative morphological parameters depended on the duration of hyperglycemia and dominated in the cartilaginous tissue of the articular surface of the mandibular head.


Author(s):  
Martin E. Atkinson

It is essential that dental students and practitioners understand the structure and function of the temporomandibular joints and the muscles of mastication and other muscle groups that move them. The infratemporal fossa and pterygopalatine fossa are deep to the mandible and its related muscles; many of the nerves and blood vessels supplying the structures of the mouth run through or close to these areas, therefore, knowledge of the anatomy of these regions and their contents is essential for understanding the dental region. The temporomandibular joints (TMJ) are the only freely movable articulations in the skull together with the joints between the ossicles of the middle ear; they are all synovial joints. The muscles of mastication move the TMJ and the suprahyoid and infrahyoid muscles also play a significant role in jaw movements. The articular surfaces of the squamous temporal bone and of the condylar head (condyle) of the mandible form each temporomandibular joint. These surfaces have been briefly described in Chapter 22 on the skull and Figure 24.1A indicates their shape. The concave mandibular fossa is the posterior articulating surface of each squamous temporal bone and houses the mandibular condyle at rest. The condyle is translated forwards on to the convex articular eminence anterior to the mandibular fossa during jaw movements. The articular surfaces of temporomandibular joints are atypical; they covered by fibrocartilage (mostly collagen with some chondrocytes) instead of hyaline cartilage found in most other synovial joints. Figures 24.1B and 24.1C show the capsule and ligaments associated with the TMJ. The tough, fibrous capsule is attached above to the anterior lip of the squamotympanic fissure and to the squamous bone around the margin of the upper articular surface and below to the neck of the mandible a short distance below the limit of the lower articular surface. The capsule is slack between the articular disc and the squamous bone, but much tighter between the disc and the neck of the mandible. Part of the lateral pterygoid muscle is inserted into the anterior surface of the capsule. As in other synovial joints, the non-load-bearing internal surfaces of the joint are covered with synovial membrane.


2020 ◽  
Vol 8 (11) ◽  
pp. 232596712096210
Author(s):  
Daisuke Momma ◽  
Wataru Iwamoto ◽  
Kaori Endo ◽  
Kazuki Sato ◽  
Norimasa Iwasaki

Background: The distribution pattern of subchondral bone density is an indicator of stress distribution over a joint surface under long-term physiologic loading. The biomechanical characteristics of the articular surfaces of the shoulder joint in gymnasts can be determined by measuring this distribution pattern. Purpose: To evaluate the distribution of subchondral bone density across the shoulder joint in male collegiate gymnasts and to determine the effects of gymnastic activities on its articular surfaces under long-term loading conditions using computed tomography osteoabsorptiometry (CTOAM). Study Design: Descriptive laboratory study. Methods: CT image data were obtained from both shoulders of 12 asymptomatic male collegiate gymnasts (gymnast group; mean age, 19.4 years; range, 18-22 years) and 10 male collegiate volunteers (control group; mean age, 20.2 years; range, 18-22 years). The distribution pattern of subchondral bone density across the articular surfaces of each shoulder joint was assessed by CTOAM. Quantitative analysis was performed of the locations and percentages of high-density areas on the articular surface. Results: Stress distribution patterns over the articular surfaces differed between the gymnasts and the controls. In the gymnasts, high-density areas were detected on the posterosuperior articular surface of the humeral head and the anterosuperior and/or posterosuperior articular surface of the glenoid. Mean bone density was greater in the gymnasts than in the controls ( P < .0001). Conclusion: Stress distribution over the articular surfaces of the shoulder joint was affected by gymnastic activities. Stress was concentrated over the superior part of the glenohumeral joint in male collegiate gymnasts. Clinical Relevance: The present findings suggest that gymnastic activities increase stress to the articular surfaces of the superior glenohumeral joint. This supports the notion that mechanical conditions play a crucial role in the origin of disorders particular to gymnastic activities.


2020 ◽  
Vol 28 (10) ◽  
pp. 3080-3086 ◽  
Author(s):  
Tobias Stornebrink ◽  
J. Nienke Altink ◽  
Daniel Appelt ◽  
Coen A. Wijdicks ◽  
Sjoerd A. S. Stufkens ◽  
...  

Abstract Purpose Technical innovation now offers the possibility of 2-mm diameter operative arthroscopy: an alternative to conventional arthroscopy that no longer uses inner rod-lenses. The purpose of this study was to assess whether all significant structures in the ankle could be visualized and surgically reached during 2-mm diameter operative arthroscopy, without inflicting iatrogenic damage. Methods A novel, 2-mm diameter arthroscopic system was used to perform a protocolled arthroscopic procedure in 10 fresh-frozen, human donor ankles. Standard anteromedial and anterolateral portals were utilized. Visualization and reach with tailored arthroscopic instruments of a protocolled list of articular structures were recorded and documented. A line was etched on the most posterior border of the talar and tibial cartilage that was safely reachable. The specimens were dissected and distances between portal tracts and neurovascular structures were measured. The articular surfaces of talus and tibia were photographed and inspected for iatrogenic damage. The reachable area on the articular surface was calculated and analysed. Results All significant structures were successfully visualized and reached in all specimens. The anteromedial portal was not in contact with neurovascular structures in any specimen. The anterolateral portal collided with a branch of the superficial peroneal nerve in one case but did not cause macroscopically apparent harm. On average, 96% and 85% of the talar and tibial surfaces was reachable respectively, without causing iatrogenic damage. Conclusion 2-mm diameter operative arthroscopy provides safe and effective visualization and surgical reach of the anterior ankle joint. It may hold the potential to make ankle arthroscopy less invasive and more accessible.


1972 ◽  
Vol 94 (2) ◽  
pp. 131-135 ◽  
Author(s):  
B. Weightman ◽  
S. Simon ◽  
I. Paul ◽  
R. Rose ◽  
E. Radin

A laboratory study has been made of the lubrication and friction characteristics of a plastic on metal (Charnley-Muller) and a metal on metal (McKee-Farrar) total hip joint replacement prostheses. The results show the effect of lubricant, speed, and load on the performance of the joints. Under a 560 lb load the coefficient of friction of the plastic to metal joint was lower than that of the metal to metal at speeds up to the equivalent of fast walking. Bovine serum and synovial fluid, as well as human serum albumin were found to be good lubricants of both types of prostheses. The frictional force produced by the metal on metal prosthesis increased linearly with load, in both the dry and lubricated states. This was not the case with the plastic to metal joint. The results show that at low physiological loads the effort required to articulate the prostheses are comparable while at higher loads the friction force of the metal to plastic is significantly lower. Friction readings taken with no lubricant indicate the serious damage which would result in the human body if a metal to metal prosthesis became devoid of liquid. The load and speed behavior of the prostheses require different interpretation of the data than presently postulated.


Author(s):  
Nahuel A. Muñoz ◽  
Guillermo H. Cassini ◽  
Adriana M. Candela ◽  
Sergio F. Vizcaíno

ABSTRACTArticular surfaces reflect the relative movements between adjacent bones, and the ones involved in the elbow joint provide information about forelimb movements and may be useful for making inferences about the substrate use. The proximal articular surface of the ulna was examined through 3-D geometric morphometrics, in order to assess its usefulness as a proxy for paleoecological interpretations; particularly for two small mammals from the early Miocene of Patagonia. The sample was composed of 22 extant small mammals (rodents, carnivorans and primates) and two extinct typotheres: Hegetotherium mirabile (Hegetotheriidae) and Interatherium robustum (Interatheriidae). Forty-five landmarks were taken and principal component analysis (PCA) was used to explore the morphospace structure. The results of PCA for the whole surface were inconclusive; therefore, successive analyses were made, subdividing the surface into sub-units. The PCA for the proximal part of the trochlear notch was the most informative, allowing the recognition of morphospaces with functional value: one for digging rodents and another for most climbers. Neither typothere would have had a specialisation for climbing or digging in the features analysed. This study allows morphological patterns on different parts of a joint to be detected; interpreted, at least partially, as differential responses to different kinds of mechanical stress.


Sign in / Sign up

Export Citation Format

Share Document