CCS AS ONE OF the CO2 EMISSION REDUCTION METHODS

Author(s):  
Teresa ADAMCZAK-BIAŁY ◽  
Adam WÓJCICKI

Information presented in the article allows us to introduce one of the ways of reducing anthropogenic greenhouse gas emissions responsible for the temperature increase and climate change. This is the technology of capture and underground storage of carbon dioxide in geologic structures (Carbon Capture and Storage/Sequestration – CCS). Most of the large-scale CCS projects (i.e. capture and storage of an order of magnitude of 1 million tonnes of CO2 per year) operate in the United States and Canada. Many of them are associated with the use of CO2 captured from the industrial processes for the enhanced oil recovery (EOR). The presented examples of projects are: Boundary Dam Integrated Carbon Capture and Sequestration Demonstration Project (Canada), Great Plains Synfuels and Weyburn-Midale Project (Canada), and Kemper County IGCC Project (United States). CCS projects are crucial for demonstrating the technological readiness and reduce the cost of wider commercial implementation of capture and geological storage of CO2. The status of the projects on geological storage of CO2 in 2015 is 15 large-scale CCS projects operating around the world, and 7 projects in execution.

2007 ◽  
Vol 4 (5) ◽  
pp. 343-352 ◽  
Author(s):  
Andrew J. Gibbons ◽  
Elizabeth JI. Wilson

AbstractCarbon capture and storage could play an important role as a near-term bridging technology, enabling deep reductions from greenhouse gas emissions while still allowing use of inexpensive fossil fuels. However, filling this technological promise requires resolution of key regulatory and legal uncertainties surrounding both human and ecological health, integration within a larger climate policy, and clear assignment of responsibility and liability for long-term care. Deployment of CCS projects in the European Union (E.U.) and the United States (U.S.) may be technologically similar, but will be contextually different. In this paper, we explore the existing energy, policy, regulatory and legal climates that will necessitate different approaches for deployment. The high U.S. dependence on coal makes CCS very important if the U.S. is to achieve deep emissions reductions, while in the E.U. an established climate policy, the importance of off shore projects, and a supportive political climate are favorable to CCS deployment. Additionally, in Europe, regulators must clarify the classification of CO2 within E.U. and international regulations governing on and offshore projects, whereas in the U.S. subsurface property rights, abandoned wells, and state-level jurisdictional difference will play important roles.


Subject Carbon capture and storage technology. Significance Carbon capture and storage (CCS) is considered critical to achieving the ambitious reductions in greenhouse gas emissions set out in the 2015 Paris Agreement. CCS technology would allow power plants and industrial facilities to continue burning fossil fuels without pumping climate change-inducing gases into the atmosphere. However, deployment of CCS has been slow and the prospect of meeting the expectations placed upon it by the Paris climate negotiators is moving further out of scope. The recent cancellation of the Kemper CCS project in the United States is a bad sign for the future of the technology. Impacts Without faster deployment of CCS, many countries will struggle to meet their Paris Agreement emissions reduction pledges. If the rollout of CCS continues to falter, more wind and solar power will be needed to reduce carbon emissions. Absent a viable CCS model, it will be even more difficult to replace aged coal plants in the United States and other developed economies.


2018 ◽  
Vol 115 (38) ◽  
pp. E8815-E8824 ◽  
Author(s):  
Ryan W. J. Edwards ◽  
Michael A. Celia

In February 2018, the United States enacted significant financial incentives for carbon capture, utilization, and storage (CCUS) that will make capture from the lowest-capture-cost sources economically viable. The largest existing low-capture-cost opportunity is from ethanol fermentation at biorefineries in the Midwest. An impediment to deployment of carbon capture at ethanol biorefineries is that most are not close to enhanced oil recovery (EOR) fields or other suitable geological formations in which the carbon dioxide could be stored. Therefore, we analyze the viability of a pipeline network to transport carbon dioxide from Midwest ethanol biorefineries to the Permian Basin in Texas, which has the greatest current carbon dioxide demand for EOR and large potential for expansion. We estimate capture and transport costs and perform economic analysis for networks under three pipeline financing scenarios representing different combinations of commercial and government finance. Without government finance, we find that a network earning commercial rates of return would not be viable. With 50% government financing for pipelines, 19 million tons of carbon dioxide per year could be captured and transported profitably. Thirty million tons per year could be captured with full government pipeline financing, which would double global anthropogenic carbon capture and increase the United States’ carbon dioxide EOR industry by 50%. Such a development would face challenges, including coordination between governments and industries, pressing timelines, and policy uncertainties, but is not unprecedented. This represents an opportunity to considerably increase CCUS in the near-term and develop long-term transport infrastructure facilitating future growth.


2011 ◽  
Vol 21 (2) ◽  
pp. 313-323 ◽  
Author(s):  
Melisa Pollak ◽  
Sarah Johnson Phillips ◽  
Shalini Vajjhala

2017 ◽  
Vol 57 (2) ◽  
pp. 413
Author(s):  
Christopher Consoli ◽  
Alex Zapantis ◽  
Peter Grubnic ◽  
Lawrence Irlam

In 1972, carbon dioxide (CO2) began to be captured from natural gas processing plants in West Texas and transported via pipeline for enhanced oil recovery (EOR) to oil fields also in Texas. This marked the beginning of carbon capture and storage (CCS) using anthropogenic CO2. Today, there are 22 such large-scale CCS facilities in operation or under construction around the world. These 22 facilities span a wide range of capture technologies and source feedstock as well as a variety of geologic formations and terrains. Seventeen of the facilities capture CO2 primarily for EOR. However, there are also several significant-scale CCS projects using dedicated geological storage options. This paper presents a collation and summary of these projects. Moving forward, if international climate targets and aspirations are to be achieved, CCS will increasingly need to be applied to all high emission industries. In addition to climate change objectives, the fundamentals of energy demand and fossil fuel supply strongly suggests that CCS deployment will need to be rapid and global. The oil and gas sector would be expected to be part of this deployment. Indeed, the oil and gas industry has led the deployment of CCS and this paper explores the future of CCS in this industry.


2020 ◽  
Vol 10 (5) ◽  
pp. 20190065 ◽  
Author(s):  
William J. Schmelz ◽  
Gal Hochman ◽  
Kenneth G. Miller

We model the costs of carbon capture and storage (CCS) in subsurface geological formations for emissions from 138 northeastern and midwestern electricity-generating power plants. The analysis suggests coal-sourced CO 2 emissions can be stored in this region at a cost of $52–$60 ton −1 , whereas the cost to store emission from natural-gas-fired plants ranges from approximately $80 to $90. Storing emissions offshore increases the lowest total costs of CCS to over $60 per ton of CO 2 for coal. Because there apparently is sufficient onshore storage in the northeastern and midwestern United States, offshore storage is not necessary or economical unless there are additional costs or suitability issues associated with the onshore reservoirs. For example, if formation pressures are prohibitive in a large-scale deployment of onshore CCS, or if there is opposition to onshore storage, offshore storage space could probably store emissions at an additional cost of less than $10 ton −1 . Finally, it is likely that more than 8 Gt of total CO 2 emissions from this region can be stored for less $60 ton −1 , slightly more than the $50 ton −1 Section 45Q tax credits incentivizing CCS.


2010 ◽  
Vol 14 (3) ◽  
pp. 971-986 ◽  
Author(s):  
Klaas van Alphen ◽  
Paul M. Noothout ◽  
Marko P. Hekkert ◽  
Wim C. Turkenburg

Energy Policy ◽  
2021 ◽  
Vol 151 ◽  
pp. 112149
Author(s):  
Silvia Pianta ◽  
Adrian Rinscheid ◽  
Elke U. Weber

Sign in / Sign up

Export Citation Format

Share Document