scholarly journals A data-driven predictive model of the grinding wheel wear using the neural network approach

2017 ◽  
Vol 4 (17) ◽  
pp. 69-82 ◽  
Author(s):  
Pawel LEZANSKI

Advanced manufacturing depends on the timely acquisition, distribution, and utilization of information from machines and processes. These activities can improve accuracy and reliability in predicting resource needs and allocation, maintenance scheduling, and remaining service life of equipment. Thus, to model the state of tool wear and next to predict its remaining useful life (RUL) significantly increases the sustainability of manufacturing processes. there are many approaches, methods and theories applied to predictive model building. the proposed paper investigates an artificial neural network (ANN) model to predict the wear propagation process of grinding wheel and to estimate the RUL of the wheel when the extrapolated data reaches a predefined final failure value. The model building framework is based on data collected during external cylindrical plunge grinding. Firstly, usefulness of selected features of the measured process variables to be symptoms of grinding wheel state is experimentally verified. Next, issues related to development of an effective MLP model and its use in prediction of the grinding wheel RUL is discussed.

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Yanfang Wang ◽  
Saeed Salehi

Real-time drilling optimization improves drilling performance by providing early warnings in operation Mud hydraulics is a key aspect of drilling that can be optimized by access to real-time data. Different from the investigated references, reliable prediction of pump pressure provides an early warning of circulation problems, washout, lost circulation, underground blowout, and kicks. This will help the driller to make necessary corrections to mitigate potential problems. In this study, an artificial neural network (ANN) model to predict hydraulics was implemented through the fitting tool of matlab. Following the determination of the optimum model, the sensitivity analysis of input parameters on the created model was investigated by using forward regression method. Next, the remaining data from the selected well samples was applied for simulation to verify the quality of the developed model. The novelty is this paper is validation of computer models with actual field data collected from an operator in LA. The simulation result was promising as compared with collected field data. This model can accurately predict pump pressure versus depth in analogous formations. The result of this work shows the potential of the approach developed in this work based on NN models for predicting real-time drilling hydraulics.


Author(s):  
Han-Xiong Huang ◽  
Dong Li

As the plastics extrusion blow molded parts are getting more and more complex, it is necessary to optimize the parison dimension distribution. Predicting the parison dimension distribution is useful to optimize the thickness distribution and property of the final part. The dependency between parison dimensions and materials characteristics, processing conditions, and die geometry is a highly nonlinear and fully coupled one. In this work, diameter and thickness swells of the high-density polyethylene parison extruded under different flow rates were obtained by a well-designed experiment. The obtained data were then used to train and test the artificial neural network (ANN) model. Trained and tested ANN model can be used to predict the dimensions at any location on the parison within a given range.


Author(s):  
X Chen ◽  
W B Rowe ◽  
Y Li ◽  
B Mills

The amplitude of grinding vibration increases gradually throughout the grinding wheel wear process. In the meantime the predominant vibration frequency shifts in a region close to a natural frequency of the system. The complex time-varying pattern of vibrations makes it a problem to objectively identify when the grinding vibration becomes unacceptable and when the wheel should be redressed. A neural network approach method was proposed in this paper to identify the wheel life. The signal data were pre-treated by eight-band-pass filters, which covered the whole frequency range of the grinding chatter. These pre-treated data were used as the inputs to the neural network. By training the neural network, an objective criterion can be determined for the wheel redress life.


Author(s):  
Hossam Eldin Ali ◽  
Yacoub M. Najjar

A backpropagation artificial neural network (ANN) algorithm with one hidden layer was used as a new numerical approach to characterize the soil liquefaction potential. For this purpose, 61 field data sets representing various earthquake sites from around the world were used. To develop the most accurate prediction model for liquefaction potential, alternating combinations of input parameters were used during the training and testing phases of the developed network. The accuracy of the designed network was validated against an additional 44 records not used previously in either the network training or testing stages. The prediction accuracy of the neural network approach–based model is compared with predictions obtained by using fuzzy logic and statistically based approaches. Overall, the ANN model outperformed all other investigated approaches.


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
Roselina Sallehuddin ◽  
Subariah Ibrahim ◽  
Azlan Mohd Zain ◽  
Abdikarim Hussein Elmi

Fraud in communication has been increasing dramatically due to the new modern technologies and the global superhighways of communication, resulting in loss of revenues and quality of service in telecommunication providers especially in Africa and Asia.  One of the dominant types of fraud is SIM box bypass fraud whereby SIM cards are used to channel national and multinational calls away from mobile operators and deliver as local calls. Therefore it is important to find techniques that can detect this type of fraud efficiently. In this paper, two classification techniques, Artificial Neural Network (ANN) and Support Vector Machine (SVM) were developed to detect this type of fraud.   The classification uses nine selected features of data extracted from Customer Database Record.  The performance of ANN is compared with SVM to find which model gives the best performance. From the experiments, it is found that SVM model gives higher accuracy compared to ANN by giving the classification accuracy of 99.06% compared with ANN model, 98.71% accuracy. Besides, better accuracy performance, SVM also requires less computational time compared to ANN since it takes lesser amount of time in model building and training.


2014 ◽  
Vol 59 (4) ◽  
pp. 1061-1076 ◽  
Author(s):  
D.C. Panigrahi ◽  
S.K. Ray

Abstract The paper addresses an electro-chemical method called wet oxidation potential technique for determining the susceptibility of coal to spontaneous combustion. Altogether 78 coal samples collected from thirteen different mining companies spreading over most of the Indian Coalfields have been used for this experimental investigation and 936 experiments have been carried out by varying different experimental conditions to standardize this method for wider application. Thus for a particular sample 12 experiments of wet oxidation potential method were carried out. The results of wet oxidation potential (WOP) method have been correlated with the intrinsic properties of coal by carrying out proximate, ultimate and petrographic analyses of the coal samples. Correlation studies have been carried out with Design Expert 7.0.0 software. Further, artificial neural network (ANN) analysis was performed to ensure best combination of experimental conditions to be used for obtaining optimum results in this method. All the above mentioned analysis clearly spelt out that the experimental conditions should be 0.2 N KMnO4 solution with 1 N KOH at 45°C to achieve optimum results for finding out the susceptibility of coal to spontaneous combustion. The results have been validated with Crossing Point Temperature (CPT) data which is widely used in Indian mining scenario.


Author(s):  
Shu-Farn Tey ◽  
Chung-Feng Liu ◽  
Tsair-Wei Chien ◽  
Chin-Wei Hsu ◽  
Kun-Chen Chan ◽  
...  

Unplanned patient readmission (UPRA) is frequent and costly in healthcare settings. No indicators during hospitalization have been suggested to clinicians as useful for identifying patients at high risk of UPRA. This study aimed to create a prediction model for the early detection of 14-day UPRA of patients with pneumonia. We downloaded the data of patients with pneumonia as the primary disease (e.g., ICD-10:J12*-J18*) at three hospitals in Taiwan from 2016 to 2018. A total of 21,892 cases (1208 (6%) for UPRA) were collected. Two models, namely, artificial neural network (ANN) and convolutional neural network (CNN), were compared using the training (n = 15,324; ≅70%) and test (n = 6568; ≅30%) sets to verify the model accuracy. An app was developed for the prediction and classification of UPRA. We observed that (i) the 17 feature variables extracted in this study yielded a high area under the receiver operating characteristic curve of 0.75 using the ANN model and that (ii) the ANN exhibited better AUC (0.73) than the CNN (0.50), and (iii) a ready and available app for predicting UHA was developed. The app could help clinicians predict UPRA of patients with pneumonia at an early stage and enable them to formulate preparedness plans near or after patient discharge from hospitalization.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Sign in / Sign up

Export Citation Format

Share Document