scholarly journals Effect of Weave Structures and Zinc Oxide Nanoparticles on the Ultraviolet Protection of Cotton Fabrics

2018 ◽  
Vol 26 (1(127)) ◽  
pp. 113-119 ◽  
Author(s):  
Iwona Frydrych ◽  
A. Joseph Arul Pragasam

The protection provided by clothing against ultraviolet (UV) radiation has been the subject of considerable recent research. However, there is a lack of information concerned with the effect of weave structures and zinc oxide nanoparticles on these properties. A series of cotton fabrics differing in weave structure was produced and treated with zinc oxide nanoparticles. These fabrics were spectrophotometrically assessed and the UV protection factor calculated. It was found that while there was no significant difference in the Ultraviolet Protection Factor (UPF) in untreated samples, in samples treated with zinc oxide nanoparticles an increase was noticed in satin and granite weaves. There is no relationship between weave parameters and the UPF. Also between porosity and the UPF, no relationship was noticed. Thus the present study provides design guidelines for clothing manufacturers.

2020 ◽  
Vol 90 (21-22) ◽  
pp. 2441-2453 ◽  
Author(s):  
Jinshu Liu ◽  
Xiaoyan Ma ◽  
Wenzhao Shi ◽  
Jianwei Xing ◽  
Chaoqun Ma ◽  
...  

The aim of the study was to investigate the anti-ultraviolet properties of β-cyclodextrin-grafted cotton fabrics dyed with broadleaf holly leaf extract. Flavonoids were extracted from broadleaf holly leaf by maceration and a stoichiometry of 1:1 inclusion complex with β-cyclodextrin was formed. Characterized by the fluorescence spectrum and ultraviolet spectrophotometry, the fluorescence intensities and ultraviolet absorption of the macerated extract were enhanced by increasing the amount of cyclodextrin. Cotton fabrics were grafted with β-cyclodextrin through a crosslinking reaction based on citric acid in the presence of sodium hypophosphite then dyed with the macerated extract of broadleaf holly leaf used as a natural ultraviolet absorbent. The anti-ultraviolet property of fabrics dyed by a macerated extract was characterized in terms of the ultraviolet protection factor. It was noted that the cotton fabrics grafted with β-cyclodextrin exhibit enhanced anti-ultraviolet and wrinkle recovery properties compared to the unmodified samples and show an excellent durability against 30 washing cycles, accompanied by a loss of tensile strength.


2018 ◽  
Vol 10 (1) ◽  
pp. 53-57
Author(s):  
AMIR QADERMARZI ◽  
MOJTABA POULADI ◽  
ALI REZAMAND ◽  
SEYED HOSSEIN HOSEINIFAR ◽  
ALI AKBAR HEDAYATI

Qadermarzi A, Pouladi M, Rezamand A, Hoseinifar SH, Hedayati AA. 2018. Investigation of sub-acute levels of zinc oxide nanoparticles on the filtration rate of Mytilaster lineatus and Dressina polymorpha in the short term. Nusantara Bioscience 10: 53-57. The filtration rate is one of the physiological indices in the bivalves which indicate the degree of efficacy of the filtration function in the exposure to contaminants. In this study, changes in the filtration rate of freshwater bivalves (D. polymorpha and M. lineatus) were investigated after exposure periods of 5 and 10 days with nanoparticles. Bivalves were transferred from the natural environment to the laboratory. The distribution of nanoparticles was measured by differential light scattering (DLS). Bivalves were exposed to 2.5, 25 and 50 ppm nanoparticles for ten days in water reservoirs. The filtration rates were significantly different in the treatments compared to the control samples, with the highest filtration rate was observed in the control group. On the fifth day, the highest filtration rate was obtained in the first treatment of M. lineatus and the lowest filtration rate was obtained in the third treatment of D. polymorphia. The highest filtration rates were observed in the first and second treatments and the lowest filtration rate was observed in the third treatment. Also, there was no significant difference in the filtration rate of M. lineatus in the 1st treatment with control (P> 0.05) on the 5th day, but filtration rate was significantly (P <0.05) less than other concentrations and control group in the third treatment. On the other hand, the filtration rates on the 10th day showed similar differences compared to the 5th day. It could be concluded that the changes infiltration rate are an appropriate indicator for the measurement of contamination in nanoparticles.


2020 ◽  
Vol 5 (27) ◽  
pp. 8370-8378 ◽  
Author(s):  
Mohammad Ansari ◽  
Seyed Abdolkarim Sajjadi ◽  
Samaneh Sahebian ◽  
Elham Kamali Heidari

2018 ◽  
Vol 89 (11) ◽  
pp. 2260-2278 ◽  
Author(s):  
Tapas Ranjan Kar ◽  
Ashis Kumar Samanta ◽  
Mohammed Sajid ◽  
Runali Kaware

A different percentage of nanoparticles of zinc oxide dispersed in a newer amino-silicone binder (poly-hydroxy-amino methyl silicone) were applied to bleached cotton khadi (handloom woven from handspun yarns) fabric to impart both ultraviolet protection and an antimicrobial finish in one step using the pad-dry-cure method, instead of using two processes for two different finishes. Amongst the varying dosages of nanoparticles of zinc oxide (1% to 5%) on the weight of fabric dispersed in poly-hydroxy-amino methyl silicone (2–10%) owf, 1% nanoparticles of zinc oxide and 4% poly-hydroxy-amino methyl silicone show ultraviolet protection factor 10 and 93–95% antibacterial reduction, whereas a 4% poly-hydroxy-amino methyl silicone and 5% nanoparticles of zinc oxide combination yields ultraviolet protection factor 20 and 99% antibacterial reduction. Thus, nanoparticles of zinc oxide at the level of 5% application with 4% poly-hydroxy-amino methyl silicone gives the best antimicrobial (99% bacterial reduction) and ultraviolet protection factor value of 20, balanced with 15–20% loss of fabric tenacity. Fourier transform infrared spectroscopy analysis reveals a complex formation between cellulose/oxy-cellulose and poly-hydroxy-amino methyl silicone that embeds nanoparticles of zinc oxide within it. Supporting reaction mechanisms proposed for both energy dispersive spectroscopy and atomic absorption spectrophotometry results further confirm the presence of zinc, potassium, and silicon on the treated cotton fabric. A wash stability test also shows the stability of the antimicrobial treatment for up to five wash cycles with 96% bacterial reduction and retention of ultraviolet protection factor of 15 after five washes. Thus, this single step combining ultraviolet protective and antimicrobial finishing of cotton fabric may be used for eco-fashion garments to protect the human skin from ultraviolet light and microbes alongside its possible uses in medical textiles to protect human body parts.


2006 ◽  
Vol 29 (6) ◽  
pp. 641-645 ◽  
Author(s):  
A Yadav ◽  
Virendra Prasad ◽  
A A Kathe ◽  
Sheela Raj ◽  
Deepti Yadav ◽  
...  

2021 ◽  
pp. 004051752110018
Author(s):  
Mengmeng Li ◽  
Amjad Farooq ◽  
Shuai Jiang ◽  
Meiling Zhang ◽  
Hassan Mussana ◽  
...  

A simple impregnation method was employed to obtain functional cotton fabric based on a zinc oxide (ZnO) and cellulose nanocomposite. The cellulose nanofibril suspension was utilized to reduce the agglomeration of ZnO nanoparticles (ZnO NPs) and bind them to the surface of the fiber. Scanning electron microscopy and inductively coupled plasma mass spectrometry were used to confirm the presence of ZnO NPs on the surface of the fiber. The treated cotton fabrics exhibited high ultraviolet protection factor values, which were still higher than 50 even after 30 standard washing cycles. Furthermore, the treated samples showed a modest antibacterial effect due to the presence of ZnO NPs. Meanwhile, the treated cotton fabrics showed a decrease (less than 30%) in air permeability.


Sign in / Sign up

Export Citation Format

Share Document