Optimization and analysis of porosity and roughness in selective laser melting 316L parts

2018 ◽  
Vol 1 (90) ◽  
pp. 5-15 ◽  
Author(s):  
M. Król ◽  
J. Mazurkiewicz ◽  
S. Żołnierczyk

Purpose: The investigations have been carried out on 316L stainless steel parts fabricated by Selective Laser Melting (SLM) technique. The study aimed to determine the effect of SLM parameters on porosity, hardness, and structure of 316L stainless steel. Design/methodology/approach: The analyses were conducted on 316L stainless steel parts by using AM125 SLM machine by Renishaw. The effects of the different manufacturing process parameters as power output, laser distance between the point’s melted metal powder during additive manufacturing as well as the orientation of the model relative to the laser beam and substrate on porosity, hardness, microstructure and roughness were analysed and optimised. Findings: The surface quality parts using 316L steel with the assumed parameters of the experiment depends on the process parameters used during the SLM technique as well as the orientation of formed walls of the model relative to the substrate and thus the laser beam. The lowest roughness of 316L SLM parts oriented perpendicularly to the substrate was found when 100 W and 20 μm the distance point was utilised. The lowest roughness for part oriented at 60° relatives to the substrate was observed when 125 W and the point distance 50 μm was employed. Practical implications: Stainless steel is one of the most popular materials used for selective laser sintering (SLM) processing to produce nearly fully dense components from 3D CAD models. Reduction of porosity is one of the critical research issues within the additive manufacturing technique SLM, since one of the major cost factors is the post-processing. Originality/value: This manuscript can serve as an aid in understanding the importance of technological parameters on quality and porosity of manufactured AM parts made by SLM technique.

Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 729 ◽  
Author(s):  
Wei Chen ◽  
Guangfu Yin ◽  
Zai Feng ◽  
Xiaoming Liao

Additive manufacturing by selective laser melting (SLM) was used to investigate the effect of powder feedstock on 316L stainless steel properties include microstructure, relative density, microhardness and mechanical properties. Gas atomized SS316L powders of three different particle size distribution were used in this study. Microstructural investigations were done by scanning electron microscopy (SEM). Tensile tests were performed at room temperatures. Microstructure characterization revealed the presence of hierarchical structures consisting of solidified melt pools, columnar grains and multiform shaped sub-grains. The results showed that the SLM sample from the fine powder obtained the highest mechanical properties with ultimate tensile strength (UTS) of 611.9 ± 9.4 MPa and yield strength (YS) of 519.1 ± 5.9 MPa, and an attendant elongation (EL) of 14.6 ± 1.9%, and a maximum of 97.92 ± 0.13% and a high microhardness 291 ± 6 HV0.1. It has been verified that the fine powder (~16 μm) could be used in additive manufacturing with proper printing parameters.


Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 111 ◽  
Author(s):  
Xiaojing Sun ◽  
Fengchun Jiang ◽  
Jiandong Wang

A bulk specimen and two different lattice sandwich structures composed of 316L stainless steel were fabricated via selective laser melting. This study analysed the acoustic properties, including sound insulation and sound absorption, of the three kinds of structures, which were produced via selective laser melting under the same process parameters. The results showed that the difference in the unit structures, rather than microstructural difference, was the main reason for the difference in acoustic properties between the samples. Under the same process parameters, the microstructure of the different structures had the same cell structure. However, the sound absorption properties of the lattice sandwich structures were better than those of the bulk sample in the measured frequency range of 1–6.3 kHz. The lattice sandwich structure with 2.5 × 2.5 × 2.5 mm3 unit structures exhibited excellent sound insulation properties in the frequency range of 1–5 kHz.


Author(s):  
Xiaoming He ◽  
Ziqiang Zhu ◽  
Changlei Shao ◽  
Ran Huang

Additive Manufacturing (AM) can fabricate 3D complex functional parts, which can reduce material waste and increase manufacturing efficiency significantly. These benefits make AM technique suitable for some critical industry applications. Confident application of the AM technique requires whole understanding of AM parts’ properties. Safety and economics are essential to nuclear power plant. In this study, an innovative 316L stainless steel spent fuel storage rack with integrative structure was designed, and a small model of this rack was fabricated by selective laser melting (SLM), mechanical properties of the 316L stainless steel manufactured by SLM technique are studied and discussed. Key technical issues of application of AM to manufacturing nuclear parts are also discussed.


2018 ◽  
Vol 284 ◽  
pp. 667-672
Author(s):  
P.A. Lykov ◽  
R.M. Baitimerov

Additive manufacturing (AM) technologies make it possible to produce complex shape metallic objects from powder feedstock. AlSi12 alloy is one of the most widely used materials in selective laser melting (SLM). The large number of technological parameters involved complicate the selection of an SLM mode for obtaining a product with the required structure. The goal of this research was to determine the mode which ensures the material’s low porosity. Nine specimens were fabricated by using different SLM process parameters. The fabricated specimens have different microstructures. The lowest porosity that was achieved is about 0.5%.


Sign in / Sign up

Export Citation Format

Share Document