Calcium hydroxid. Determination in workplace air

2019 ◽  
Vol 36 (2(100)) ◽  
pp. 61-72
Author(s):  
Jolanta Surgiewicz

Calcium hydroxide is a white color solid. It is used in construction, chemical industry, water purification and wastewater treatment, flue gas desulphurization. Calcium hydroxide causes serious damage to the eyes, irritates the skin and it can cause after-launch respiratory irritation. Maximum allowable concentration value (MAC) for calcium hydroxide in the work environment in Poland, for the inhalable and respirable fraction is 2 mg/m3 (STEL is 6 mg/m3) and 1 mg/m3 (STEL is 4 mg/m3), respectively. The aim of the study was to develop a method for determining the concentration of calcium hydroxide present in the inhalable and respirable fraction in the workplaces atmosphere, in the range from 1/10 to 2 MAC values in accordance with the requirements of European Standard PN-EN 482. The developed method is based on collecting, stopping calcium hydroxide (contained in the inhalable and the respirable fraction) on membrane filters, mineralizing filters with concentrated nitric acid and determining calcium of the resulted solution by atomic absorption spectrometry with atomization in acetylene-air flame (F-AAS). The described method allows the determination of calcium in workplace air concentrations in the range of 0.50–20.00 µg/ml. The calibration curve characterized by a high value of the correlation coefficient: R2 = 1.0000. The limit of detection (LOD) is 0.1 ng/ml and the limit of quantification (LOQ) is 0.3 ng/ml. The determined coefficient of recovery is 1.00. An analytical method allows the determination of the concentration of the calcium hydroxide present in the workplace air in the inhalable fraction in the concentration range of 0.10–4.11 mg/m3 (sample air volume 720 L) and in the reparable fraction in the concentration range 0.07–2.70 mg/m3 (for a sample air volume of 684 L), which represents 0.05–2.1 MAC value for the inhalable fraction and 0.07–2.7 MAC value for the respirable fraction. The method has good precision and accuracy and meets the requirements of European Standard PN-EN 482 for procedures for determining chemical agents. The method for determining calcium hydroxide has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.

2019 ◽  
Vol 35 (1(99)) ◽  
pp. 5-18
Author(s):  
Anna Jeżewska ◽  
Agnieszka Woźnica

But-2-enal (crotonaldehyde) is a colourless liquid with an unpleasant suffocating odour. But-2-enal occurs naturally in food. It is mainly used for the production of sorbic acid, a food preservative. But-2-enal is a very toxic, highly irritating and allergenic substance – it is suspected of causing genetic defects. The aim of the study was to develop a method for determination of but-2-enal, which will enable determination of concentrations of this substance in the workplace air in the range from 1/10 to 2 MAC values. The tests were performed using a liquid chromatograph (HPLC) with a diode array detector (DAD), equipped with an Ultra C18 column (250 x 4.6 mm; 5 μm). The method consists in retaining the but-2-enal on a silica gel coated with 2,4-dinitrophenylhydrazine. The sample is extracted with acetonitrile and analyzed by HPLC. Validation of the method was carried out in accordance with the requirements of the European standard EN 482. The measuring range of the method is from 0.1 to 2 mg/m3 for a 12 l sample of air. The following validation parameters were obtained: limit of detection: 1.26 ng/ml (0.21 μg/m3), limit of quantification: 3.77 ng/ml (0.63 μg/m3), the overall accuracy of the method: 5.08%, expanded uncertainty: 22%. The developed analytical method enables selective determination of but-2-enal in workplace air at concentrations ranging from 0.1 mg/m3, i.e. from 1/10 of the MAC value in the presence of co-occurring substances. The method is characterized by good precision and accuracy and meets the requirements of the European standard PN-EN 482 for procedures for determination of chemical agents. The developed method of determining but-2-enal has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


2019 ◽  
Vol 35 (1(99)) ◽  
pp. 19-28
Author(s):  
Anna Jeżewska ◽  
Agnieszka Woźnica

Chlorobenzene is a colorless, flammable liquid that has an almond-like odor. It is used in industry as a solvent: resins, paints and fats, raw material for the production of plastics, as well as for the production of phenol, aniline and nitrobenzene. Occupational exposure to chlorobenzene vapors can occur through inhalation, absorption through the skin or ingestion. Harmful if inhaled, causes skin irritation. Long-term exposure affects the central nervous system. The aim of this study was an amendment to the PN-Z-04022- 03:2001 withdrawn from the Polish set of standards, and validate method for determination concentrations of chlorobenzene in the workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of the standard PN-EN 482. The study was performed using a gas chromatograph (GC) with a flame ionization detector (FID) equipped with a capillary column HP-5 (30 m x 0.32 mm, 0.25 μm). This method is based on the adsorption of chlorobenzene vapors on activated charcoal, desorption with carbon disulfide, and analyzed by GC-FID. Application of HP-5 column allows selective determination of chlorobenzene in a presence of carbon disulfide, aniline, phenol and nitrobenzene. The measurement range was 2.3 ÷ 46 mg/m3 for a 15 l air sample. Limit of detection: 6.75 ng/ml and limit of quantification: 20.25 ng/ml. Analytical method described in this paper enables selective determination of chlorobenzene in workplace atmosphere in presence of other solvents at concentrations from 2.3 mg/m3 (1/10 MAC value). The method is characterized by good precision and accuracy and meets the criteria for the performance of procedures for the measurement of chemical agents, listed in EN 482. The method may be used for the assessment of occupational exposure to chlorobenzene and the associated risk to workers’ health. The developed method of determining chlorobenzene has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


2019 ◽  
Vol 36 (2(100)) ◽  
pp. 47-59
Author(s):  
Agnieszka Woźnica

Dimethyl phthalate (DMP) is a colourless liquid with a slight aromatic odour. It is used in industry as a plasticizer of plastics, as an ingredient of fragrances in the production of cosmetics and detergents. Occupational exposure to DMP can occur through inhalation, or ingestion. The aim of this study was to validate a method for determining DMP concentration in workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of standard PN-EN 482. The study was performed using a gas chromatograph (GC) with a flame ionization detector (FID) equipped with a capillary column HP-INNOWAX (60 m x 0.25 mm, 0.15 µm). This method is based on the sorption of dimethyl phthalate vapours on a glass microfiber filter, desorption with ethanol, and analyzed by GC-FID. The average desorption efficiency of DMP from filter was 98%. Application of HP-INNOWAX column allows selective determination of DMP in the presence of other solvents. The measurement range was 0.5 – 10 mg/m3 for a 120-L air sample. Limit of detection: 0.02 µg/ml and limit of quantification: 0.06 µg/ml. The analytical method described in this paper enables a selective determination of DMP in workplace air in the presence of other solvents at concentrations from 0.5 mg/m3 (1/10 MAC value). The method is characterized by good precision and accuracy and meets the criteria for the performance of procedures for the measurement of chemical agents, listed in EN 482. The method may be used for the assessment of occupational exposure to DMP and the associated risk to workers’ health. The developed method of determining DMP has been recorded as an analytical procedure (see appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
S. N. Prashanth ◽  
Shankara S. Kalanur ◽  
Nagappa L. Teradal ◽  
J. Seetharamappa

The electrochemical behavior of isothipendyl hydrochloride (IPH) was investigated at bare and multiwalled-carbon-nanotube modified glassy carbon electrode (MWCNT-GCE). IPH (55 μM) showed two oxidation peaks in Britton-Robinson (BR) buffer of pH 7.0. The oxidation process of IPH was observed to be irreversible over the pH range of 2.5–9.0. The influence of pH, scan rate, and concentration of the drug on anodic peak was studied. A differential pulse voltammetric method with good precision and accuracy was developed for the determination of IPH in pure and biological fluids. The peak current was found to be linearly dependent on the concentration of IPH in the range of 1.25–55 μM. The values of limit of detection and limit of quantification were noticed to be 0.284 and 0.949 μM, respectively.


2020 ◽  
Vol 2 (2) ◽  
pp. 185-192
Author(s):  
Mihaela Petrescu ◽  
◽  
Elena Bucur ◽  
Valeriu Danciulescu ◽  
Andreea Cozea ◽  
...  

This study aimed to develop two analytical methods for the determination of Cr6+ from fixed source emissions, such as the molecular absorption spectrophotometric method (UV-VIS) and the graphite furnace atomization absorption spectrometry method (GTAAS). The first stage in the development of analytical methods involves establishing the optimal operating conditions for, taking air samples, treating them for analysis, and the proceeding for analysis, followed by validating the method by determining performance parameters. For both methods is highly recommended, the use of isokinetic sampling with a sampling probe by the heated glass, quartz, or PTFE. The limit of detection and the limit of quantification were concluded to be 12.38µg/m3 and 40µg/m3, respectively for the UV-VIS method and the GTAAS method 0.12 µg/m3 and 0.54 µg/m3 respectively.


Author(s):  
Anna Jeżewska

Propane-1,3-sultone (PS) is an alkylating substance used in the production of polymers, fungicides, insecticides, dyes, and detergents. It is absorbed into the human body by inhalation, digestion, and through the skin; it is also a possible carcinogen. Occupational exposure to this substance may occur on industrial or laboratory contact. In Poland, the maximum allowable concentration (MAC) for PS in workplace air is 7 µg/m3. The paper presents a method for determination of PS in workplace air using a gas chromatograph coupled with a mass spectrometer (GC-MS). Air containing PS is passed through a glass tube containing a glass fiber filter and two layers of silica gel. The substance is washed with acetonitrile and the solution obtained analysed using GC-MS. The measuring range for an air sample of 360 L is 0.7 ÷ 14 µg/m3. The limit of detection (LOD) is 13 ng/m3, limit of quantification (LOQ) is 40 ng/m3.


2018 ◽  
Vol 34 (2(96)) ◽  
pp. 133-143
Author(s):  
Agnieszka Woźnica

1,2-Dichloroethane is a colorless, highly flammable liquid with a chloroform-like odor. This substance is used in industry as an intermediate in the production of vinyl chloride, but it is also used in the production of other chlorinated hydrocarbons. It is also used as a solvent. 1,2-Dichloroethane is carcinogenic for humans. The aim of this study was to develop a method for determining concentrations of 1,2-dichloroethane in the workplace air in the range from 1/10 to 2 MAC values (0.82–16.4 mg/m3). The study was performed using a gas chromatograph (GC) with a flame ionization detector (FID) equipped with a capillary column HP-1 (50 m x 0.32 mm; 0.3 μm). The method is based on the adsorption of 1,2-dichloroethane on activated charcoal, desorption of analyzed compound with carbon disulfide and analysis of obtained solution with GC-FID. The use of HP-1 column enabled selective determination of 1,2-dichloroethane in a presence of other substances. The average desorption coefficient of 1,2-dichloroethane from charcoal was 0.98. The method is linear (r = 0.9999) within the investigated working range from 9.84 to 196.8 μg/ml, which is equivalent to air concentrations from 0.82 to 16.4 mg/m3 for a 12-L air sample. The limit of detection (LOD) and limit of quantification (LOQ) were to 2.284 μg/ml and 6.85 μg/ml, respectively. The analytical method described in this paper enables selective determination of 1,2-dichloroethane in workplace air in presence of other substances at concentrations from 0.82 mg/m3 (1/10 MAC value). The method is precise, accurate and it meets the criteria for procedures for measuring chemical agents listed in Standard No. EN 482. The method can be used for assessing occupational exposure to 1,2-dichloroethane and associated risk to workers’ health. The developed method of determining 1,2-dichloroethane has been recorded as an analytical procedure (see appendix).


2019 ◽  
Vol 16 (3) ◽  
pp. 41
Author(s):  
Nguyen Ngoc Hung ◽  
Huynh Thi Nhan ◽  
Bui Phuoc Hung ◽  
Nguyen Thi Tuyet Nhung ◽  
Phan Thi Hoang Yen

This article describes the application of response surface methodology to the development of a procedure for mercury determination by cold vapor atomic absorption spectroscopy (CV-AAS) in lipstick samples after digestion by Kieldahl method. A Box-Hunter matrix was used to find optimal conditions for the procedure through a response surface study. Three variables “time, temperature, volume of HNO3 acid” were regarded as factors in the optimization study. In optimized condition, the linearity range was 0.2 ÷ 15 µg/L while the limit of detection (LOD) and limit of quantification (LOQ) were 0.17 and 0.57 ppb, respectively. This method  presented good precision (RSD ≤ 8.2%) and good recovery (81%-109%). This method was applied to determine mercury in seven lipstick samples and the highest mercury content was 0.229 ± 0.016 mg/kg.


2019 ◽  
Vol 36 (2(100)) ◽  
pp. 15-26
Author(s):  
Jolanta Surgiewicz

Zinc dichloride is very soluble in water. It is used in galvanic processes, for wood impregna-tion, in the textile industry, in organic synthesis and for the production of explosives, for example smoke candles. Zinc dichloride has an irritating, corrosive and damaging effect on the eyes, mucous membranes of the airways, causes severe pneumonia, skin burns and systemic poisoning. Maximum allowable concentration value (MAC) for the inhalable fraction of zinc dichloride in Poland is 1 mg/m3 and the short-term exposure limit value (STEL) is 2 mg/m3. The aim of the study was to amend standard PN-Z-04367:2008 and to develop a method for determining zinc dichloride in workplace air in the range from 1/10 to 2 MAC values. The developed method of determination is based on taking a sample of air into two membrane filters, washing out zinc dichloride from the filters with deionized water and de-termining that compound as zinc by atomic absorption spectrometry (F-AAS) with atomiza-tion in air-acetylene flame. The method allows determination of zinc dichloride in the work-place air in the concentration range of 0.07–2.17 mg/m3 (for an air sample with a volume of 720 L, which corresponds to 0.1–2.2 of the MAC value. The method is characterized by good precision and accuracy and meets the requirements of European Standard PN-EN 482 for procedures for the determination of chemical substances. The method for the determination of zinc dichloride has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


2018 ◽  
Vol 101 (5) ◽  
pp. 1647-1652 ◽  
Author(s):  
Leane Santos Nunes ◽  
Valfredo Azevedo Lemos

Abstract In this work, a method using ultrasound-assisted emulsification microextraction (USAEME) without the use of ligands in an online system for preconcentration and determination of cadmium was developed. The method was based on the preconcentration of cadmium by USAEME, employing trichloroethylene as the extraction solvent, and subsequent retention of the rich phase in a mini-column packed with silica gel. The extracted metal was determined by flame atomic absorption spectrometry. The parameters that affect the extraction of cadmium were optimized using the univariate method. Under optimized conditions, the method presented a limit of detection of 0.17 μg/L, a limit of quantification of 0.57 μg/L, an enrichment factor of 56, and a consumptive index of 0.18 mL/min. The accuracy of the method was tested by analyzing the certified reference material, National Institute of Standards and Technology (NIST) 1573 (tomato leaves). The determination of Cd in water (drinking water, bottled water, river water, and seawater) and tea (black and green tea) samples was also performed using the proposed method. The method is simple, efficient, and eco-friendly because it requires low consumption of an organic solvent.


Sign in / Sign up

Export Citation Format

Share Document