New Perspectives in Joint Cartilage Treatment with Special Emphasis on New Types of Hydrogels: a Review

2019 ◽  
Vol 21 (4) ◽  
pp. 237-251
Author(s):  
Maciej Baranowski ◽  
Jarosław Czubak

Joints are a necessary anatomic and functional element of the organ of locomotion. Hyaline cartilage is a very important element of a joint in physiological terms. Joint cartilage is subjected to injuries associated with non-physiological loading and excessive abnormal mobility caused by ligament instability. These can lead to damage to the surface of the cartilage and the development of defects. Until now there has been no „golden standard” for treating injuries to joint cartilage. The goal of this treatment is to sustain knee function at a level that is tolerable and acceptable to the patient. Three major minimally invasive techniques for treating damage of the surface of the joints are currently available, namely 1) the microfracture technique, which stimulates bone marrow. Regenerative processes promote the formation of fibrohyaline cartilage. 2) transplantation of osteocartilaginous allo- and autogeneic cylinders. 3) in vitro chondrocyte culture and transplantation of these chondrocytes to sites with cartilage defects. This review describes both the historical and modern techniques of joint cartilage treatment as well as new perspectives related to the use of biomaterials in the healing of cartilage defects.

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Yuan Li ◽  
Yanping Liu ◽  
Qiang Guo

AbstractCartilage defects frequently occur around the knee joint yet cartilage has limited self-repair abilities. Hydrogel scaffolds have excellent potential for use in tissue engineering. Therefore, the aim of the present study was to assess the ability of silk fibroin (SF) hydrogel scaffolds incorporated with chitosan (CS) nanoparticles (NPs) to repair knee joint cartilage defects. In the present study, composite systems of CS NPs incorporated with transforming growth factor-β1 (TGF-β1; TGF-β1@CS) and SF incorporated with bone morphogenetic protein-2 (BMP-2; TGF-β1@CS/BMP-2@SF) were developed and characterized with respect to their size distribution, zeta potential, morphology, and release of TGF-β1 and BMP-2. Bone marrow stromal cells (BMSCs) were co-cultured with TGF-β1@CS/BMP-2@SF extracts to assess chondrogenesis in vitro using a cell counting kit-8 assay, which was followed by in vivo evaluations in a rabbit model of knee joint cartilage defects. The constructed TGF-β1@CS/BMP-2@SF composite system was successfully characterized and showed favorable biocompatibility. In the presence of TGF-β1@CS/BMP-2@SF extracts, BMSCs exhibited normal cell morphology and enhanced chondrogenic ability both in vitro and in vivo, as evidenced by the promotion of cell viability and the alleviation of cartilage defects. Thus, the TGF-β1@CS/BMP-2@SF hydrogel developed in the present study promoted chondrogenic ability of BMSCs both in vivo and in vitro by releasing TGF-β1 and BMP-2, thereby offering a novel therapeutic strategy for repairing articular cartilage defects in knee joints.


2021 ◽  
Vol 11 (6) ◽  
pp. 2512
Author(s):  
Anca Labunet ◽  
Andreea Kui ◽  
Sorina Sava

Orthodontists must sometimes bond attachments to ceramic crowns, by using one of the surface preparations available, such as sandblasting or acid etching with hydrofluoric acid. Research shows that different laser systems may also be used for this purpose. The aim of this review is to determine which laser type and modality of use is the most effective in increasing shear bond strength of brackets bonded to ceramic surfaces. Two independent researchers studied the current literature 1990–2018 and selected original articles focusing on in vitro research on laser use for ceramic surface preparation for bonding metallic or ceramic attachments. Twelve articles have met the criteria and have been thoroughly revised, focusing on 2 fractional, Nd:Yag, Er:Yag, femtosecond and Ti:Sapphire lasers. There is little difference shown by the current studies between ceramic types and information on orthodontic bonding to non-feldspathic ceramics is scarce. Femtosecond laser is a good alternative to classical surface preparation with hydrofluoric acid. Nd:Yag laser is more suitable for surface preparation of ceramics than different types of Er:Yag lasers. Difference in laser power may achieve different results, but the golden standard for lasers use has not been found. Laser usage does not obtain the same results as hydrofluoric acid and cannot, so far, eliminate its application.


Author(s):  
Zhong Li ◽  
Yikang Bi ◽  
Qi Wu ◽  
Chao Chen ◽  
Lu Zhou ◽  
...  

AbstractTo evaluate the performance of a composite scaffold of Wharton’s jelly (WJ) and chondroitin sulfate (CS) and the effect of the composite scaffold loaded with human umbilical cord mesenchymal stem cells (hUCMSCs) in repairing articular cartilage defects, two experiments were carried out. The in vitro experiments involved identification of the hUCMSCs, construction of the biomimetic composite scaffolds by the physical and chemical crosslinking of WJ and CS, and testing of the biomechanical properties of both the composite scaffold and the WJ scaffold. In the in vivo experiments, composite scaffolds loaded with hUCMSCs and WJ scaffolds loaded with hUCMSCs were applied to repair articular cartilage defects in the rat knee. Moreover, their repair effects were evaluated by the unaided eye, histological observations, and the immunogenicity of scaffolds and hUCMSCs. We found that in vitro, the Young’s modulus of the composite scaffold (WJ-CS) was higher than that of the WJ scaffold. In vivo, the composite scaffold loaded with hUCMSCs repaired rat cartilage defects better than did the WJ scaffold loaded with hUCMSCs. Both the scaffold and hUCMSCs showed low immunogenicity. These results demonstrate that the in vitro construction of a human-derived WJ-CS composite scaffold enhances the biomechanical properties of WJ and that the repair of knee cartilage defects in rats is better with the composite scaffold than with the single WJ scaffold if the scaffold is loaded with hUCMSCs.


2016 ◽  
Vol 24 ◽  
pp. S159-S160
Author(s):  
G.G. Schulze-Tanzil ◽  
J. Badendick ◽  
O. Godkin ◽  
B. Kohl ◽  
M. Jagielski ◽  
...  

2013 ◽  
Vol 815 ◽  
pp. 345-349 ◽  
Author(s):  
Ching Wen Hsu ◽  
Ping Liu ◽  
Song Song Zhu ◽  
Feng Deng ◽  
Bi Zhang

Here we reported a combined technique for articular cartilage repair, consisting of bone arrow mesenchymal stem cells (BMMSCs) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers carried with tissue growth factor (TGF-belat1). In the present study, BMMSCs seeded on PLGA-PEG-PLGA with were incubated in vitro, carried or not TGF-belta1, Then the effects of the composite on repair of cartilage defect were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) in the patellar groove were either left empty (n=18), implanted with BMMSCs/PLGA (n=18), TGF-belta1 modified BMMSCs/PLGA-PEG-PLGA. The defect area was examined grossly, histologically at 6, 24 weeks postoperatively. After implantation, the BMMSCs /PLGA-PEG-PLGA with TGF-belta1 group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology. These findings suggested that a combination of BMMSCs/PLGA-PEG-PLGA carried with tissue growth factor (TGF-belat1) may be an alternative treatment for large osteochondral defects in high loading sites.


Author(s):  
Yanhong Zhao ◽  
Xige Zhao ◽  
Rui Zhang ◽  
Ying Huang ◽  
Yunjie Li ◽  
...  

Repair of articular cartilage defects is a challenging aspect of clinical treatment. Kartogenin (KGN), a small molecular compound, can induce the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes. Here, we constructed a scaffold based on chondrocyte extracellular matrix (CECM) and poly(lactic-co-glycolic acid) (PLGA) microspheres (MP), which can slowly release KGN, thus enhancing its efficiency. Cell adhesion, live/dead staining, and CCK-8 results indicated that the PLGA(KGN)/CECM scaffold exhibited good biocompatibility. Histological staining and quantitative analysis demonstrated the ability of the PLGA(KGN)/CECM composite scaffold to promote the differentiation of BMSCs. Macroscopic observations, histological tests, and specific marker analysis showed that the regenerated tissues possessed characteristics similar to those of normal hyaline cartilage in a rabbit model. Use of the PLGA(KGN)/CECM scaffold may mimic the regenerative microenvironment, thereby promoting chondrogenic differentiation of BMSCs in vitro and in vivo. Therefore, this innovative composite scaffold may represent a promising approach for acellular cartilage tissue engineering.


2008 ◽  
Vol 399 ◽  
pp. 205-210
Author(s):  
Dan Ioan Stoia ◽  
Nicolae Faur ◽  
Mirela Toth-Taşcău ◽  
Laurenţiu Culea

The paper describes the biomechanical behavior of a cervical implanted unit (CIU) in two conditions: during the physiological and extreme loading. In order to reveal these behaviors, the anatomical structure composed by the C2 and C3 cervical vertebras was implanted using a plate-screws metal structure. The implant was design to perform dynamical, by allowing longitudinal, transversal and rotational movements. The physiological conditions were simulated by the pulsatory negative loading, while the extreme loading was simulated by the alternant symmetrical loading. The tests reveal two behaviors: the durability of the CIU in the physiological loading conditions and the failure of the structure under extreme load.


1997 ◽  
Vol 18 (7) ◽  
pp. 418-423 ◽  
Author(s):  
Alberto Branca ◽  
Luigi Di Palma ◽  
Carmelo Bucca ◽  
Camilla Sagarriga Visconti ◽  
M. Di Mille

Ankle arthroscopy has recently allowed the elaboration of less invasive techniques for the treatment of anterior impingement. Its indications, advantages, and drawbacks in this application are discussed. Between 1987 and 1994, 133 patients were treated for ankle impingement. Among them, 58 patients, 37 men and 21 women (mean age, 28.5 years), who had failed a trial of conservative treatment were treated by means of tibiotalar arthroscopy. Twenty-seven were athletes engaged in sports with abnormal stressing of the ankle. According to McDermott's radiological classification, there were 15 stage I cases, 23 stage II, 13 stage III, and 7 stage IV. Preoperative evaluation with a modified version of McGuire's scoring system gave 50 cases rated as “poor” (<60 points) and 8 cases rated as “fair” (60–67 points). Treatment consisted of removal of adhesions, cartilage shaving, and removal of the bone impingement with powered instruments, curettes, or small osteotomes. Follow-up was from 8 to 62 months (mean, 21.5 months). The postoperative McGuire ratings were 37 good, 13 fair, and 8 poor. There were no major complications. Recurrence of impingement was observed in four cases of stage III and IV. The conclusion is drawn that ankle arthroscopy is a sound method for the treatment of anterior impingement. Even in cases with severe joint cartilage impairment, it plays a therapeutic role as a means of postponing a possible arthrodesis.


Sign in / Sign up

Export Citation Format

Share Document