IMPACT OF ENGINE CONTROL ON THE ENERGETIC INTER CHANGE ABILITY OF DIESEL OIL BY GAS IN DUAL FUEL CI ENGINE

2015 ◽  
Vol 20 (4) ◽  
pp. 425-434
Author(s):  
Zdzisław Stelmasiak
Author(s):  
Lakhwinder Singh

Background: Punjab (India) an agricultural state with twelve major crops sown round the year, produces 14.53 MT as crop residue. This huge quantity of crop residue poses a serious problem of stubble burning in the fields, leading to an alarming level of air pollution across the state, along with a potential loss of fuel usable for power generation. About 1000 MW of electricity can be generated from this crop residue by the proper utilization (Singh et al. 2015). Methods: Characteristics of various crop residues were evaluated experimentally and further investigations have been carried out to study the performance of producer gas derived from mustard stalk using a downdraft gasifier in combination with diesel oil in dual fuel diesel engine, where effect of various input parameters such as type of fuel, equivalence ratio and load on engine were studied on emission component SO2. Results were modeled and optimized through central composite design (CCD) of response surface methodology (RSM) using design of experiments technique to determine the most desirable mode of utilization. Result: It has been found that fixed carbon (40.55%), sulphur (0.367%), moisture contents (6.88%) and nitrogen contents (1.314%) in mustard stalk is almost same as in coal, where as hydrogen (6.124%), oxygen (43.965%), volatile matter (68.93%), gross calorific values (3933 kcal/kg) of mustard stalk are more and ash content (6.65%) is less as compared to corresponding values for coal. In all the three modes of operations, SO2 increases with increase in load on the engine. ER has no effect in diesel alone mode but in dual modes with increase in ER further increases SO2 as high temperature producer gas and air along with sulphur enters the engine which further increases the value of SO2.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
A. Gharehghani ◽  
S. M. Mirsalim ◽  
S. A. Jazayeri

Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as pilot. The influence of intake pressure and temperature on knock occurrence and the effects of initial swirl ratio on heat release rate, temperature-pressure and emission levels have been investigated in this study. It is shown that an increase in the initial swirl ratio lengthens the delay period for auto-ignition and extends the combustion period while it reduces NOx. There is an optimum value of the initial swirl ratio for a certain mixture intake temperature and pressure conditions that can achieve high thermal efficiency and low NOxemissions while decreases the tendency to knock. Simultaneous increase of intake pressure and initial swirl ratio could be the solution to power loss and knock in dual fuel engine.


2018 ◽  
Author(s):  
Chiara Guido ◽  
Pierpaolo Napolitano ◽  
Valentina Fraioli ◽  
Carlo Beatrice ◽  
Nicola Del Giacomo

2020 ◽  
Vol 33 ◽  
pp. 3248-3253
Author(s):  
S. Karthikeyan ◽  
M. Periyasamy ◽  
A. Prathima

2021 ◽  
Vol 850 (1) ◽  
pp. 012005
Author(s):  
Nikhil Muthu Kumar ◽  
Harsh Bhavsar ◽  
G Sakthivel ◽  
Mohammed Musthafa Feroskhan ◽  
K Karunamurthy

Abstract The introduction of the strict emissions norms is diverting the research for the development of new technologies which leads to the reduction of engine exhaust emissions. The usage of biodiesel in CI engine can enhance air quality index and protects the environment. Biodiesel can do an increment in the life of CI engines because it is clean-burning and a stable fuel when compared to diesel. Moreover, biogas has the potential to decrease both nitrogen oxides and smoke emissions simultaneously. Operating the engine in dual-fuel mode can provide lower emissions and a proper substitute for diesel. In this research, a modified CI Engine with single cylinder is used. Biogas is used as primary fuel and diesel, Mahua oil-diesel blend and Fish oil-diesel blend are used as secondary fuel. The effect of various secondary fuel blends on performance and emission characteristics in dual fuel engine are compared. In light of the performance and emission qualities it is reasoned that, utilization of the dual fuel mode in engine signifies the durability and lessens the harmful emissions from the engine with the exception of hydrocarbon and CO emissions. The excessive viscosity of fish oil and mahua oil prompts inconvenience in siphoning and spray attributes. The incompetent mixing of raw fish oil and raw mahua oil with diesel and biogas including air leads to incomplete combustion.


Biofuels ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 197-205 ◽  
Author(s):  
M. Feroskhan ◽  
Saleel Ismail ◽  
Ajay Kumar ◽  
Vibhav Kumar ◽  
Syed Khwaja Aftab

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3857 ◽  
Author(s):  
Arkadiusz Jamrozik ◽  
Wojciech Tutak ◽  
Karol Grab-Rogaliński

One of the possibilities to reduce diesel fuel consumption and at the same time reduce the emission of diesel engines, is the use of alternative gaseous fuels, so far most commonly used to power spark ignition engines. The presented work concerns experimental research of a dual-fuel compression-ignition (CI) engine in which diesel fuel was co-combusted with CNG (compressed natural gas). The energy share of CNG gas was varied from 0% to 95%. The study showed that increasing the share of CNG co-combusted with diesel in the CI engine increases the ignition delay of the combustible mixture and shortens the overall duration of combustion. For CNG gas shares from 0% to 45%, due to the intensification of the combustion process, it causes an increase in the maximum pressure in the cylinder, an increase in the rate of heat release and an increase in pressure rise rate. The most stable operation, similar to a conventional engine, was characterized by a diesel co-combustion engine with 30% and 45% shares of CNG gas. Increasing the CNG share from 0% to 90% increases the nitric oxide emissions of a dual-fuel engine. Compared to diesel fuel supply, co-combustion of this fuel with 30% and 45% CNG energy shares contributes to the reduction of hydrocarbon (HC) emissions, which increases after exceeding these values. Increasing the share of CNG gas co-combusted with diesel fuel, compared to the combustion of diesel fuel, reduces carbon dioxide emissions, and almost completely reduces carbon monoxide in the exhaust gas of a dual-fuel engine.


Sign in / Sign up

Export Citation Format

Share Document