scholarly journals Site Soil Classification Interpretation Based on Standard Penetration Test and Shear Wave Velocity Data

Author(s):  
Windu Partono ◽  
Muhammad Asrurifak ◽  
Edy Tonnizam ◽  
Frida Kistiani ◽  
Undayani Cita Sari ◽  
...  

Site soil classification provides vital information for predicting the soil amplification or the site factor. The site factor is important for calculating the surface spectral acceleration in the seismic design of buildings. Based on the Indonesian seismic code, site soil classification can be conducted by calculating the average standard penetration (N-SPT) resistance, the average shear wave velocity (VS) and the average undrained soil strength (Su) of the upper 30 m of a subsoil layer. Different results may be obtained at the same location when the site soil classification is predicted using N-SPT than when using VS data. The restriction of N-SPT values until a maximum of 60 compared to a VS maximum of 750 m/sec can produce different soil classes and will directly impact the calculation of the surface spectral acceleration. This paper describes the different results of site soil classification prediction calculated using the average N-SPT and the average VS, conducted at Semarang City, Indonesia. Site soil classification maps developed based on both datasets are also presented, to evaluate the different site soil classification distributions. Only soil classes SD and SE were observed using N-SPT maximum 60, whereas soil classes SC, SD and SE were observed using N-SPT maximum 120.

2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Thanop Thitimakorn ◽  
Thanabodi Raenak

AbstractThe primary goal of this study is to generate the NEHRP soil classification map for Lamphun City using the average shear wave velocity values (Vs


2020 ◽  
Vol 91 (6) ◽  
pp. 3381-3390
Author(s):  
Hai-Yun Wang ◽  
Wei-Ping Jiang

Abstract The shear-wave velocity (VS) in soil is an important parameter to characterize dynamic soil properties. The Delaney Park downhole array was deployed in 2003 without measuring the shear- and compression-wave velocity (VS and VP) profiles. Thornley et al. (2019) measured the VS and VP profiles using the downhole method after the sensor was removed from the 61 m borehole with casing in the array. However, the waves propagating along the casing wall may have a great influence on the recognition of the first arrival of waves propagating in the soil. Using horizontal and vertical components of weak-motion data of eight local earthquakes recorded by the array, in situ VS and VP profiles were assessed by the seismic interferometry based on deconvolution, respectively. The results are as follows. The VS and VP profiles computed by this study and measured by Thornley et al. (2019) are in relatively good agreement at a depth of 10–45 m and at a depth of 30–45 m, respectively, and in very poor agreement at other depths. The average VS profiles computed by this study are more consistent with the derived VS from the standard penetration test data at the site with slower near-surface velocities relative to the downhole logging analysis. There are strong anisotropy in the strata below 45 m and weak anisotropy with various degrees at various depths in the strata above 45 m.


2006 ◽  
Vol 23 (1) ◽  
pp. 57s-68s ◽  
Author(s):  
Masashi MATSUOKA ◽  
Kazue WAKAMATSU ◽  
Kazuo FUJIMOTO ◽  
Saburoh MIDORIKAWA

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Dalia Munaff Naji ◽  
Muge K. Akin ◽  
Ali Firat Cabalar

Assessment of seismic site classification (SSC) using either the average shear wave velocity (VS30) or the average SPT-N values (N30) for upper 30 m in soils is the simplest method to carry out various studies including site response and soil-structure interactions. Either the VS30- or the N30-based SSC maps designed according to the National Earthquake Hazards Reduction Program (NEHRP) classification system are effectively used to predict possible locations for future seismic events. The main goal of this study is to generate maps using the Geographic Information System (GIS) for the SSC in Kahramanmaras city, influenced by both East Anatolian Fault and Dead Sea Fault Zones, using both VS30 and N30 values. The study also presents a series of GIS maps produced using the shear wave velocity (VS) and SPT-N values at the depths of 5 m, 10 m, 15 m, 20 m, and 25 m. Furthermore, the study estimates the bed rock level and generates the SSC maps for the average VS values through overburden soils by using the NEHRP system. The VS30 maps categorize the study area mainly under class C and limited number of areas under classes B and D, whereas the N30 maps classify the study area mainly under class D. Both maps indicate that the soil classes in the study area are different to a high extent. Eventually, the GIS maps complied for the purpose of urban development may be utilized effectively by engineers in the field.


Sign in / Sign up

Export Citation Format

Share Document