scholarly journals The Effect of Temperature on the Electrical Characteristics of Nanofluids Based on Palm Oil

2021 ◽  
Vol 53 (3) ◽  
pp. 210312
Author(s):  
Pichai Muangpratoom

This study sought to apply nanotechnology to develop the electrical characteristics of palm oil. Experiments were conducted using three types of nanoparticles: zinc oxide (ZnO), titanium dioxide (TiO2), and barium titanate (BaTiO3). The nanofluid samples were prepared by mixing the nanoparticles with palm oil using various processes. In the first scenario, a combination of palm oil with nanoparticles at 0.01 vol% was created, while the next sample had 0.03 vol% of nanoparticles. The samples were then fully dispersed using a magnetic stirrer, followed by ultrasonic dispersal in order to ensure homogeneity of the nanofluid. The electrodes were set 2.5 mm apart and the test was performed six times on each test sample in compliance with the IEC 60156 standard. The voltage breakdown characteristics were recorded for each of the liquids at temperatures varying from 35 °C to 90 °C. The results showed that for the palm oil samples containing nanoparticles, the voltage breakdown was greater than for the samples containing unmodified palm oil.

2008 ◽  
Vol 5 (2) ◽  
pp. 219-223 ◽  
Author(s):  
Abbas J. Attia ◽  
Salih H. Kadhim ◽  
Falah H. Hussein

Photodegradation of a real textile dyeing wastewater taken from Hilla textile factory in Babylon Governorate, Iraq have been investigated. Photocatalytic degradation was carried out over suspensions of titanium dioxide or zinc oxide under ultraviolet irradiation. Photodegradation percentage was followed spectrophometrically by the measurements of absorbance at λmax equal to 380 nm. The rate of photodegradation increased linearly with time of irradiation when titanium dioxide or zinc oxide was used. A maximum color removal of 96% was achieved after irradiation time of 2.5 hours when titanium dioxide used at 303K and 82% color reduction was observed when zinc oxide used for the same period and at the same temperature. The effect of temperature on the efficiency of photodegradation of dyestuff was also studied. The activation energy of photodegradation was calculated and found to be equal to 21 ± 1 kJ mol-1 on titanium dioxide and 24 ± 1 kJ mol-1 on zinc oxide.


Author(s):  
Jayaraman Kumaravel ◽  
Kandhasamy Lalitha ◽  
Murugan Arunthirumeni ◽  
Muthugounder Subramanian Shivakumar

Sign in / Sign up

Export Citation Format

Share Document