scholarly journals Konversi katalitik n-butanol menjadi hidrokarbon Cr~C4 menggunakan katalis B2O3/zeolit alam

2018 ◽  
Vol 6 (2) ◽  
pp. 649
Author(s):  
S Setiadi ◽  
D Dariyus

C2~C4 hydrocarbons are important petrochemical feedstocks for polymer, MTBE, alkylation reagent and LPG. Those hydrocarbons can be produced sustainable from n­butanol through the catalytically reaction which can be produced renewably through a fermentation process. The development of catalytically can be done by using natural zeolite by adding boron oxide (B203.   The combination of these two catalyst's substance is hoped to increase  the catalytic performance  in converting  n-butanol  to hydrocarbon  of C2~C4 .This research has studied that addition boron oxide in natural zeolite as much as 25% gave the highest conversion (82,9%) and yield of C2~C4 (14,7% at 400°C}. No peaks due to the boron oxide catalyst on the XRD spectrum and the high surface area of natural zeolite (343 m2/g) strongly suggest that the boron oxide was dispersed perfectly on the surface of natural zeolite and interacted strongly with zeolite's frame. The formation of a new active site for converting n-butanol to hydrocarbon C2~C4 is highly considered which is more active comparing to natural zeolite or boron oxide itself.Keyword : n-butanol, hydrocarbon C2~C4, boron oxide, catalytic conversionAbstrakHidrokarbon  C2~C4  merupakan  senyawa  yang  penting  da/am  industri  kimia petrokimia misalnya  bahan baku po/imer,  MTBE,  untuk  alki/asi, senyawa  isookatana maupun LPG. Sampai   saat   ini, sumber   utama senyawa   hidrokarbon   tersebut   berasal   dari   hasi/ pengolahan minyak  bumi. Karena  semakin  menispisnya  cadangan  minyak  dunia,  maka dimasa depan kebergantungan  hidrokarbon  C2~C4  ini pada pasokan  minyak harus segera dicarikan  alternatif sumber  lainnya yang  lebih terjaga kesinambungannya.  Penelitian ini bermaksud menyajikan bahwa hidrokarbon C2~C4 dapat dipero/eh dari senyawa organik n­ butanol melalui reaksi katalitik menggunakan kata/is zeolit a/am. Proses ini sangat penting karena reaktan n-butanol merupakan suatu senyawa yang renewable (dapat diperbaharui) dari proses fermentasi.  Zeolit alam dimodifikasi dengan penambahan boron oksida dengan berbagai kadar. Hasil yang dipero/eh bahwa boron oksida berkandungan 25% memberikan hasif yang paling baik, dengan konversi butnao/  82,9 % dan yield  C2~C4  14,7 %  dengan suhu reaksi  400  °C Namun,  karakterisasi XRD  tidak  menunjukkan puncak-puncak yang dimiliki oleh komponen boron oksida. Hal ini menunjukkan bahwa boron oksida terdispersi secara sempurna pada permukaan zeo/it a/am (343 m2/g), berinteraksi secara kuat dengan frame kerangka  zeolit  dan terbentuknya spesi inti aktif baru hasil perpaduan  zeolit  alam maupun boron oksida yang lebih aktif da/am mengkonversi n-butanol menjadi C2~C4.Kata Kunci :n-butanol, hidrokarbon C2~C4, boron oksida, konversi katalitik

2011 ◽  
Vol 233-235 ◽  
pp. 269-272
Author(s):  
Zhi Gang Jia ◽  
Kuan Kuan Peng ◽  
Yan Hua Li ◽  
Rong Sun Zhu

Magnetic mesoporous Mn-Fe oxide catalyst with high surface area was prepared by calcining the corresponding oxalate precursor. The calcined sample was characterized by XRD, FTIR, N2 adsorption, TEM, and SEM. The catalytic property of the porous Mn-Fe oxide catalyst was evaluated by catalytic decolorization of methyl orange (MO). XRD, SEM, and TEM analysis and N2 adsorption–desorption isotherm revealed mesoporous Mn-Fe oxide strucutre with high-surface area and uniform pore-size distribution. The results of catalytic performance measurements showed that the Mn-Fe binary oxide was an effective catalyst. The as-prepared catalyst could be recycled as a magnetically separatable catalyst to treat dye-containing wastewater.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3602 ◽  
Author(s):  
Neel Narayan ◽  
Ashokkumar Meiyazhagan ◽  
Robert Vajtai

Nanoparticles play a significant role in various fields ranging from electronics to composite materials development. Among them, metal nanoparticles have attracted much attention in recent decades due to their high surface area, selectivity, tunable morphologies, and remarkable catalytic activity. In this review, we discuss various possibilities for the synthesis of different metal nanoparticles; specifically, we address some of the green synthesis approaches. In the second part of the paper, we review the catalytic performance of the most commonly used metal nanoparticles and we explore a few roadblocks to the commercialization of the developed metal nanoparticles as efficient catalysts.


2020 ◽  
Vol 8 (35) ◽  
pp. 18318-18326 ◽  
Author(s):  
Hailong Peng ◽  
Yangcenzi Xie ◽  
Zicheng Xie ◽  
Yunfeng Wu ◽  
Wenkun Zhu ◽  
...  

Porous high entropy alloy CrMnFeCoNi exhibited remarkable catalytic activity and stability toward p-nitrophenol hydrogenation. The enhanced catalytic performance not only resulted from the high surface area, but also from exposed high-index facets with terraces.


RSC Advances ◽  
2014 ◽  
Vol 4 (93) ◽  
pp. 51184-51193 ◽  
Author(s):  
Qing Zhang ◽  
Tao Wu ◽  
Peng Zhang ◽  
Ruijuan Qi ◽  
Rong Huang ◽  
...  

Hierarchical Ni/Al2O3 nanocomposite possesses a high surface area, high loading of well dispersed metal nanoparticles, and a hierarchical hollow structure. The strong interaction between metal and support and the large open accessible surface lead to excellent sintering and carbon resistance, and superior catalytic performance in methane dry reforming.


RSC Advances ◽  
2015 ◽  
Vol 5 (40) ◽  
pp. 31637-31647 ◽  
Author(s):  
Guilong Liu ◽  
Dongming Pan ◽  
Ting Niu ◽  
Ang Cao ◽  
Yizhi Yue ◽  
...  

Cu–Co-alloy/La2O3–LaFeO3materials with high surface area and mesoporosity were obtained. The prepared catalysts showed excellent catalytic performance for higher alcohol synthesis.


2016 ◽  
Vol 46 (2) ◽  
pp. 215-221
Author(s):  
Lu Xia ◽  
Jingting Liu ◽  
Decai Bao ◽  
Yunsheng Xia ◽  
Qilin Lu

2016 ◽  
Vol 188 ◽  
pp. 115-129 ◽  
Author(s):  
Stephanie Chapman ◽  
Catherine Brookes ◽  
Michael Bowker ◽  
Emma K. Gibson ◽  
Peter P. Wells

The performance of Mo-enriched, bulk ferric molybdate, employed commercially for the industrially important reaction of the selective oxidation of methanol to formaldehyde, is limited by a low surface area, typically 5–8 m2 g−1. Recent advances in the understanding of the iron molybdate catalyst have focused on the study of MoOx@Fe2O3 (MoOx shell, Fe2O3 core) systems, where only a few overlayers of Mo are present on the surface. This method of preparing MoOx@Fe2O3 catalysts was shown to support an iron molybdate surface of higher surface area than the industrially-favoured bulk phase. In this research, a MoOx@Fe2O3 catalyst of even higher surface area was stabilised by modifying a haematite support containing 5 wt% Al dopant. The addition of Al was an important factor for stabilising the haematite surface area and resulted in an iron molybdate surface area of ∼35 m2 g−1, around a 5 fold increase on the bulk catalyst. XPS confirmed Mo surface-enrichment, whilst Mo XANES resolved an amorphous MoOx surface monolayer supported on a sublayer of Fe2(MoO4)3 that became increasingly extensive with initial Mo surface loading. The high surface area MoOx@Fe2O3 catalyst proved amenable to bulk characterisation techniques; contributions from Fe2(MoO4)3 were detectable by Raman, XAFS, ATR-IR and XRD spectroscopies. The temperature-programmed pulsed flow reaction of methanol showed that this novel, high surface area catalyst (3ML-HSA) outperformed the undoped analogue (3ML-ISA), and a peak yield of 94% formaldehyde was obtained at ∼40 °C below that for the bulk Fe2(MoO4)3 phase. This work demonstrates how core–shell, multi-component oxides offer new routes for improving catalytic performance and understanding catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document