bulk catalyst
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3316
Author(s):  
Iram Razaq ◽  
Keith E. Simons ◽  
Jude A. Onwudili

Sustainable fuel-range hydrocarbons can be produced via the catalytic decarboxylation of biomass-derived carboxylic acids without the need for hydrogen addition. In this present study, 5 wt% platinum on carbon (Pt/C) has been found to be an effective catalyst for hydrothermally decarboxylating butyric acid in order to produce mainly propane and carbon dioxide. However, optimisation of the reaction conditions is required to minimise secondary reactions and increase hydrocarbon selectivity towards propane. To do this, reactions using the catalyst with varying parameters such as reaction temperatures, residence times, feedstock loading and bulk catalyst loading were carried out in a batch reactor. The highest yield of propane obtained was 47 wt% (close to the theoretical decarboxylation yield of 50 wt% on butyric acid basis), corresponding to a 96% hydrocarbon selectivity towards propane. The results showed that the optimum parameters to produce the highest yield of propane, from the range investigated, were 0.5 g butyric acid (0.57 M aqueous solution), 1.0 g Pt/C (50 mg Pt content) at 300 °C for 1 h. The reusability of the catalyst was also investigated, which showed little or no loss of catalytic activity after four cycles. This work has shown that Pt/C is a suitable and potentially hydrothermally stable heterogeneous catalyst for making biopropane, a major component of bioLPG, from aqueous butyric acid solutions, which can be sourced from bio-derived feedstocks via acetone-butanol-ethanol (ABE) fermentation.


2020 ◽  
Author(s):  
Luma Majeed Ahmed

Advanced oxidation processes (AOPs) are considered to be vital methods for treating the contaminations produced mainly by the human activations. In present-day, UV light or solar light, bulk and nano- photocatalysts are often used to enhance this technology by creating the highly reactive species such as the hydroxyl radicals. Extreme hydroxyl radical is considered as a key to start the photoreaction. Photoreaction is widely used in treatment of Lab and industrial contaminations, preparation of compounds and produced the renewable energy, so it’s classified as green technique. In order to improve the efficiency of this reaction with fabrication the surface of the used photocatalyst such as metal doped, sensitized and produced a composite as bulk catalyst or nano catalyst.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 386
Author(s):  
Feng-Wei Zhao ◽  
Qian Zhang ◽  
Feng Hui ◽  
Jun Yuan ◽  
Su-Ning Mei ◽  
...  

Catalytic behavior of alkali treated mordenite (H-MOR) in selective synthesis of ethylenediamine (EDA) via condensation amination of monoethanolamine (MEA) was investigated. Changes in the structural and acidic properties of alkali treated H-MOR were systematically investigated by N2 adsorption/desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), temperature programmed ammonia desorption (NH3-TPD), pyridine adsorption was followed by infrared spectroscopy (Py-IR), and X-ray fluorescence (XRF) analyses. The results show that alkali treatment produces more opening mesopores on the H-MOR crystal surfaces and leads to an increase in the number of B acid sites and the strength of the acid sites. The mesopores effectively enhance the rate of diffusion in the bulk catalyst. Moreover, the B acid sites are active sites in selective synthesis of EDA. Due to improvements in the diffusion conditions and reactivities, alkali treated H-MOR shows an excellent catalytic performance under mild reaction conditions. The conversion of MEA was 52.8% and selectivity to EDA increased to 93.6%, which is the highest selectivity achieved so far. Furthermore, possible mechanism for the formation of EDA is discussed.


2018 ◽  
Vol 6 (2) ◽  
pp. 2355-2362 ◽  
Author(s):  
Yasmina Hammiche-bellal ◽  
Amel Benadda-kordjani ◽  
Rafik Benrabaa ◽  
Amar Djadoun ◽  
Laaldja meddour-boukhobza
Keyword(s):  

2016 ◽  
Vol 188 ◽  
pp. 115-129 ◽  
Author(s):  
Stephanie Chapman ◽  
Catherine Brookes ◽  
Michael Bowker ◽  
Emma K. Gibson ◽  
Peter P. Wells

The performance of Mo-enriched, bulk ferric molybdate, employed commercially for the industrially important reaction of the selective oxidation of methanol to formaldehyde, is limited by a low surface area, typically 5–8 m2 g−1. Recent advances in the understanding of the iron molybdate catalyst have focused on the study of MoOx@Fe2O3 (MoOx shell, Fe2O3 core) systems, where only a few overlayers of Mo are present on the surface. This method of preparing MoOx@Fe2O3 catalysts was shown to support an iron molybdate surface of higher surface area than the industrially-favoured bulk phase. In this research, a MoOx@Fe2O3 catalyst of even higher surface area was stabilised by modifying a haematite support containing 5 wt% Al dopant. The addition of Al was an important factor for stabilising the haematite surface area and resulted in an iron molybdate surface area of ∼35 m2 g−1, around a 5 fold increase on the bulk catalyst. XPS confirmed Mo surface-enrichment, whilst Mo XANES resolved an amorphous MoOx surface monolayer supported on a sublayer of Fe2(MoO4)3 that became increasingly extensive with initial Mo surface loading. The high surface area MoOx@Fe2O3 catalyst proved amenable to bulk characterisation techniques; contributions from Fe2(MoO4)3 were detectable by Raman, XAFS, ATR-IR and XRD spectroscopies. The temperature-programmed pulsed flow reaction of methanol showed that this novel, high surface area catalyst (3ML-HSA) outperformed the undoped analogue (3ML-ISA), and a peak yield of 94% formaldehyde was obtained at ∼40 °C below that for the bulk Fe2(MoO4)3 phase. This work demonstrates how core–shell, multi-component oxides offer new routes for improving catalytic performance and understanding catalytic activity.


Author(s):  
Sayuri Okamoto ◽  
Luis Gustavo Ferroni Pereira ◽  
Leandro Jose Maschio ◽  
Andre Navarro de Miranda ◽  
Ricardo Vieira

2015 ◽  
Vol 504 ◽  
pp. 319-327 ◽  
Author(s):  
Yandie Chen ◽  
Lu Wang ◽  
Xinyi Liu ◽  
Tiefeng Liu ◽  
Baokun Huang ◽  
...  
Keyword(s):  

2014 ◽  
Vol 30 (2) ◽  
pp. 309-313 ◽  
Author(s):  
Fernanda F. Maia ◽  
Luis G. F. Pereira ◽  
Leonardo H. Gouvea ◽  
Fernando S. Costa ◽  
Ricardo Vieira

Fuel ◽  
2014 ◽  
Vol 117 ◽  
pp. 463-469 ◽  
Author(s):  
Laura Olivia Alemán-Vázquez ◽  
Fidencio Hernández-Pérez ◽  
José Luis Cano-Domínguez ◽  
Andrea Rodríguez-Hernández ◽  
José Luis García-Gutiérrez

Sign in / Sign up

Export Citation Format

Share Document