scholarly journals SuperDARN E-region backscatter boundary in the dusk-midnight sector – tracer of equatorward boundary of the auroral oval

2002 ◽  
Vol 20 (12) ◽  
pp. 1899-1904 ◽  
Author(s):  
P. T. Jayachandran ◽  
E. F. Donovan ◽  
J. W. MacDougall ◽  
D. R. Moorcroft ◽  
J.-P. St. Maurice ◽  
...  

Abstract. We compare the locations of the equatorward boundaries of SuperDARN E-region backscatter and Hb  emissions, focusing on the dusk-midnight sector of the auroral oval where the proton aurora is statistically located equatorward of the discrete electron aurora. We show that, whenever both boundaries can be simultaneously identified, they are coincident. Our result complements earlier studies, which demonstrated the correspondence between the DMSP b2i boundary and both the equatorward boundary of the proton auroral oval (Donovan et al., 2002), and the equatorward boundary of SuperDARN E-region echoes (Jayachandran et al., 2002). Further, our result shows that, provided there is sufficient precipitating proton energy flux, the SuperDARN radars can be used to monitor the equatorward edge of the proton auroral oval.Key words. Ionosphere (auroral ionosphere; particle precipitation; ionospheric irregularities)

2003 ◽  
Vol 21 (8) ◽  
pp. 1847-1868 ◽  
Author(s):  
M. L. Parkinson ◽  
J. C. Devlin ◽  
H. Ye ◽  
C. L. Waters ◽  
P. L. Dyson ◽  
...  

Abstract. The statistical occurrence of decametre-scale ionospheric irregularities, average line-of-sight (LOS) Doppler velocity, and Doppler spectral width in the sub-auroral, auroral, and polar cap ionosphere ( - 57°L to - 88°L) has been investigated using echoes recorded with the Tasman International Geospace Environment Radar (TIGER), a SuperDARN radar located on Bruny Island, Tasmania (147.2° E, 43.4° S geographic; - 54.6 °L). Results are shown for routine soundings made on the magnetic meridian beam 4 and the near zonal beam 15 during the sunspot maximum interval December 1999 to November 2000. Most echoes were observed in the nightside ionosphere, typically via 1.5-hop propagation near dusk and then via 0.5-hop propagation during pre-midnight to dawn. Peak occurrence rates on beam 4 were often > 60% near magnetic midnight and ~ - 70 °L. They increased and shifted equatorward and toward pre-midnight with increasing Kp (i.e. Bz southward). The occurrence rates remained very high for Kp > 4, de-spite enhanced D-region absorption due to particle precipitation. Average occurrence rates on beam 4 exhibited a relatively weak seasonal variation, consistent with known longitudinal variations in auroral zone magnetic activity (Basu, 1975). The average echo power was greatest between 23 and 07 MLT. Two populations of echoes were identified on both beams, those with low spectral width and a mode value of ~ 9 ms-1 (bin size of 2 ms-1) concentrated in the auroral and sub-auroral ionosphere (population A), and those with high spectral width and a mode value of ~ 70 ms-1 concentrated in the polar cap ionosphere (population B). The occurrence of population A echoes maximised post-midnight because of TIGER’s lower latitude, but the subset of the population A echoes observed near dusk had characteristics reminiscent of "dusk scatter" (Ruohoniemi et al., 1988). There was a dusk "bite out" of large spectral widths between ~ 15 and 21 MLT and poleward of - 67 °L, and a pre-dawn enhancement of large spectral widths between ~  03 and 07 MLT, centred on ~ - 61 °L. The average LOS Doppler velocities revealed that frequent westward jets of plasma flow occurred equatorward of, but overlapping, the diffuse auroral oval in the pre-midnight sector.Key words. Ionosphere (auroral ionosphere; electric fields and currents, ionospheric irregularities)


1967 ◽  
Vol 45 (9) ◽  
pp. 3065-3078 ◽  
Author(s):  
K. H. Mason ◽  
E. H. Tull ◽  
P. A. Forsyth

It has been shown previously that ground-based observations of the relative phase, or direction-of-arrival, of radio signals propagated through the ionosphere from artificial satellites provide a useful extension to existing techniques for the study of ionospheric irregularities. This technique has now been extended to observations of the auroral ionosphere using small transmitters ejected from two rockets launched at Fort Churchill, Manitoba. Observations were also made on beacon signals from the Alouette I satellite as it passed over Fort Churchill and these revealed large irregularities in the F region but no similar irregularities in the E region. Nevertheless, when transmitters were placed between the E and the F regions, large E-region irregularities (1–2 km in diameter) having excess electron densities of the order of 2 × 1011 m−3 were clearly revealed. The background ionization, though not measured, was probably of about the same magnitude. These preliminary observations raise a number of questions which need further investigation.


2005 ◽  
Vol 23 (3) ◽  
pp. 733-743 ◽  
Author(s):  
G. Chisham ◽  
M. P. Freeman ◽  
T. Sotirelis ◽  
R. A. Greenwald ◽  
M. Lester ◽  
...  

Abstract. Determining reliable proxies for the ionospheric signature of the open-closed field line boundary (OCB) is crucial for making accurate ionospheric measurements of many magnetospheric processes (e.g. magnetic reconnection). This study compares the latitudes of Spectral Width Boundaries (SWBs), identified in the morning sector ionosphere using the Super Dual Auroral Radar Network (SuperDARN), with Particle Precipitation Boundaries (PPBs) determined using the low-altitude Defense Meteorological Satellite Program (DMSP) spacecraft, in order to determine whether the SWB represents a good proxy for the ionospheric projection of the OCB. The latitudes of SWBs and PPBs were identified using automated algorithms applied to 5 years (1997-2001) of data measured in the 00:00-12:00 Magnetic Local Time (MLT) range. A latitudinal difference was measured between each PPB and the nearest SWB within a ±10min Universal Time (UT) window and within a ±1h MLT window. The results show that the SWB represents a good proxy for the OCB close to midnight (~00:00-02:00 MLT) and noon (~08:00-12:00 MLT), but is located some distance (~2°-4°) equatorward of the OCB across much of the morning sector ionosphere (~02:00-08:00 MLT). On the basis of this and other studies we deduce that the SWB is correlated with the poleward boundary of auroral emissions in the Lyman-Birge-Hopfield ``Long" (LBHL) UV emission range and hence, that spectral width is inversely correlated with the energy flux of precipitating electrons. We further conclude that the combination of two factors may explain the spatial distribution of spectral width values in the polar ionospheres. The small-scale structure of the convection electric field leads to an enhancement in spectral width in regions close to the OCB, whereas increases in ionospheric conductivity (relating to the level of incident electron energy flux) lead to a reduction in spectral width in regions just equatorward of the OCB.


2016 ◽  
Vol 2 (2) ◽  
pp. 46-65 ◽  
Author(s):  
Ольга Козырева ◽  
Olga Kozyreva ◽  
Вячеслав Пилипенко ◽  
Vyacheslav Pilipenko ◽  
Марк Энгебретсон ◽  
...  

The world-wide spatial distribution of the wave power in the Pc5 band during magnetic storms has been compared with auroral oval boundaries. The poleward and equatorward auroral oval boundaries are estimated using either the British Antarctic Survey database containing IMAGE satellite UV observations of the aurora or the OVATION model based on the DMSP particle data. The “epicenter” of the spectral power of broadband Pc5 fluctuations during the storm growth phase is mapped inside the auroral oval. During the storm recovery phase, the spectral power of narrowband Pc5 waves, both in the dawn and dusk sectors, is mapped inside the auroral oval or around its equatorward boundary. This observational result confirms previously reported effects: the spatial/temporal variations of the Pc5 wave power in the morning/pre-noon sector are closely related to the dynamics of the auroral electrojet and magnetospheric field-aligned currents. At the same time, narrowband Pc5 waves demonstrate typical resonant features in the amplitude-phase latitudinal structure. Thus, the location of the auroral oval or its equatorward boundary is the preferred latitude for magnetospheric field-line Alfven resonator excitation. This effect is not taken into account by modern theories of ULF Pc5 waves, but it could be significant for the development of more adequate models.


2020 ◽  
Vol 1 ◽  
Author(s):  
Chris Hall ◽  
Magnar Gullikstad Johnsen

AbstractIn a recent study, mid-latitude ionospheric parameters were compared with solar activity; it was suggested that the relationship between these, earlier assumed stable, might be changing with time (Lastovicka, 2019). Here, the information is extended to higher latitude (69.6°N, 19.2E) and further back in time. For the ionospheric F-region (viz. the critical frequency, FoF2) the same behaviour is seen with a change-point around 1996. For the ionospheric E-region (viz. the critical frequency, foE), change-points are less obvious than in the mid-latitude study, presumably owing to the observation site lying under the auroral oval.


2004 ◽  
Vol 22 (5) ◽  
pp. 1675-1686 ◽  
Author(s):  
J. R. T. Jussila ◽  
A. T. Aikio ◽  
S. Shalimov ◽  
S. R. Marple

Abstract. Cosmic radio noise absorption (CNA) events associated with equatorward drifting arcs during a substorm growth phase are studied by using simultaneous optical auroral, IRIS imaging riometer and EISCAT incoherent scatter radar measurements. The CNA is generally attributed to energetic particle precipitation in the D-region. However, it has been argued that plasma irregularities or enhanced electron temperature (Te) in the E-region could also produce CNA. Both of the latter mechanisms are related to intense electric fields in the ionosphere. We present two events which occur during a substorm growth phase in the evening MLT sector. In both of the events, an auroral arc is drifting equatorward, together with a region of CNA (auroral absorption bay) located on the equatorward side and outside of the arc. Both of the events are associated with enhanced D-region electron density on the equatorward side of the auroral arc, but in the second event, a region of intense electric field and enhanced electron temperature in the E-region is also located on the equatorward side of the arc. We show that in the studied events neither plasma instabilities nor enhanced Te play a significant role in producing the measured CNA, but the CNA in the vicinity of the equatorward drifting arcs is produced by D-region energetic electron precipitation. Key words. Ionosphere (auroral ionosphere; particle precipitation; electric fields and currents)


2019 ◽  
Author(s):  
Harold K. Knight

Abstract. Coincident auroral far ultraviolet (FUV) and ground-based ionosonde observations are compared for the purpose of determining whether auroral FUV remote sensing algorithms that assume pure electron precipitation are biased in the presence of proton precipitation. Auroral particle transport and optical emission models, such as the Boltzmann 3-Constituent (B3C) model, predict that maximum E region electron density (NmE) values derived from auroral Lyman-Birge-Hopfield (LBH) emission assuming electron precipitation will be biased high by up to ~ 20 % for pure proton aurora, while comparisons between LBH radiances and radiances derived from in situ particle flux observations (i.e., Knight et al., 2008, 2012) indicate that the bias associated with proton aurora should be much larger. Surprisingly, in the comparisons with ionosonde observations described here, no bias associated with proton aurora is found in FUV-derived auroral NmE, which means that auroral FUV remote sensing methods for NmE are more accurate in the presence of proton precipitation than was suggested in the aforementioned earlier works. Possible explanations for the discrepancy with the earlier results are discussed.


2016 ◽  
Vol 121 (4) ◽  
pp. 3198-3211 ◽  
Author(s):  
Jayanta K. Behera ◽  
Ashwini K. Sinha ◽  
Geeta Vichare ◽  
Olga Kozyreva ◽  
Rahul Rawat ◽  
...  

1980 ◽  
Vol 58 (2) ◽  
pp. 214-223 ◽  
Author(s):  
J. S. Murphree ◽  
C. D. Anger

An unusual picture which shows the entire auroral oval was obtained by the Auroral Scanning Photometer on the ISIS-2 satellite during a quiet period on December 16, 1974. This essentially instantaneous view showed the auroral distribution to be continuous with a remarkable smooth equatorward boundary through all local times, except at noon where emission rates fall below background. The instantaneous pattern departs significantly from the statistical auroral oval, but the intensity ratios I(5577 Å)/I(3914 Å) at different local times are generally consistent with what would be expected from statistical studies of particle precipitation. Data from this period show clearly the dangers in attempting to infer the state of the magnetosphere, or even the likely precipitation pattern in other sectors, from data gathered at a single longitude. The observations indicate that plasmasheet precipitation occurs around the entire auroral oval with the possible exception of the dayside gap.


Sign in / Sign up

Export Citation Format

Share Document