scholarly journals Coastal Monitoring in the Context of Climate Change: Time-Series Efforts in Lebanon and Argentina

Oceanography ◽  
2021 ◽  
pp. 12-13
Author(s):  
Abed Hassoun ◽  
◽  
Rodrigo-Hernández Moresino ◽  
Elena Barbieri ◽  
Juan Cruz Carbajal ◽  
...  
Author(s):  
Ye Yuan ◽  
Stefan Härer ◽  
Tobias Ottenheym ◽  
Gourav Misra ◽  
Alissa Lüpke ◽  
...  

AbstractPhenology serves as a major indicator of ongoing climate change. Long-term phenological observations are critically important for tracking and communicating these changes. The phenological observation network across Germany is operated by the National Meteorological Service with a major contribution from volunteering activities. However, the number of observers has strongly decreased for the last decades, possibly resulting in increasing uncertainties when extracting reliable phenological information from map interpolation. We studied uncertainties in interpolated maps from decreasing phenological records, by comparing long-term trends based on grid-based interpolated and station-wise observed time series, as well as their correlations with temperature. Interpolated maps in spring were characterized by the largest spatial variabilities across Bavaria, Germany, with respective lowest interpolated uncertainties. Long-term phenological trends for both interpolations and observations exhibited mean advances of −0.2 to −0.3 days year−1 for spring and summer, while late autumn and winter showed a delay of around 0.1 days year−1. Throughout the year, temperature sensitivities were consistently stronger for interpolated time series than observations. Such a better representation of regional phenology by interpolation was equally supported by satellite-derived phenological indices. Nevertheless, simulation of observer numbers indicated that a decline to less than 40% leads to a strong decrease in interpolation accuracy. To better understand the risk of declining phenological observations and to motivate volunteer observers, a Shiny app is proposed to visualize spatial and temporal phenological patterns across Bavaria and their links to climate change–induced temperature changes.


2021 ◽  
Vol 193 (4) ◽  
Author(s):  
Stefan Erasmi ◽  
Michael Klinge ◽  
Choimaa Dulamsuren ◽  
Florian Schneider ◽  
Markus Hauck

AbstractThe monitoring of the spatial and temporal dynamics of vegetation productivity is important in the context of carbon sequestration by terrestrial ecosystems from the atmosphere. The accessibility of the full archive of medium-resolution earth observation data for multiple decades dramatically improved the potential of remote sensing to support global climate change and terrestrial carbon cycle studies. We investigated a dense time series of multi-sensor Landsat Normalized Difference Vegetation Index (NDVI) data at the southern fringe of the boreal forests in the Mongolian forest-steppe with regard to the ability to capture the annual variability in radial stemwood increment and thus forest productivity. Forest productivity was assessed from dendrochronological series of Siberian larch (Larix sibirica) from 15 plots in forest patches of different ages and stand sizes. The results revealed a strong correlation between the maximum growing season NDVI of forest sites and tree ring width over an observation period of 20 years. This relationship was independent of the forest stand size and of the landscape’s forest-to-grassland ratio. We conclude from the consistent findings of our case study that the maximum growing season NDVI can be used for retrospective modelling of forest productivity over larger areas. The usefulness of grassland NDVI as a proxy for forest NDVI to monitor forest productivity in semi-arid areas could only partially be confirmed. Spatial and temporal inconsistencies between forest and grassland NDVI are a consequence of different physiological and ecological vegetation properties. Due to coarse spatial resolution of available satellite data, previous studies were not able to account for small-scaled land-cover patches like fragmented forest in the forest-steppe. Landsat satellite-time series were able to separate those effects and thus may contribute to a better understanding of the impact of global climate change on natural ecosystems.


2019 ◽  
Vol 31 (1) ◽  
Author(s):  
Nigel Fox ◽  
Anna Maria Jönsson

Abstract Background A warmer climate has consequences for the timing of phenological events, as temperature is a key factor controlling plant development and flowering. In this study, we analyse the effects of the long-term climate change and an extreme weather event on the first flowering day (FFD) of five spring-flowering wild plant species in the United Kingdom. Citizen science data from the UK Woodland Trust were obtained for five species: Tussilago farfara (coltsfoot), Anemone nemorosa (wood anemone), Hyacinthoides non-scripta (bluebell), Cardamine pratensis (cuckooflower) and Alliaria petiolate (garlic mustard). Results Out of the 351 site-specific time series (≥ 15-years of FFD records), 74.6% showed significant negative response rates, i.e. earlier flowering in warmer years, ranging from − 5.6 to − 7.7 days °C−1. 23.7% of the series had non-significant negative response rates, and 1.7% had non-significant positive response rates. For cuckooflower, the response rate was increasingly more negative with decreasing latitudes. The winter of 2007 reflects an extreme weather event, about 2 °C warmer compared to 2006, where the 2006 winter temperatures were similar to the 1961–1990 baseline average. The FFD of each species was compared between 2006 and 2007. The results showed that the mean FFD of all species significantly advanced between 13 and 18 days during the extreme warmer winter of 2007, confirming that FFD is affected by temperature. Conclusion Given that all species in the study significantly respond to ambient near-surface temperatures, they are suitable as climate-change indicators. However, the responses to a + 2 °C warmer winter were both more and less pronounced than expected from an analysis of ≥ 15-year time series. This may reflect non-linear responses, species-specific thresholds and cumulative temperature effects. It also indicates that knowledge on extreme weather events is needed for detailed projections of potential climate change effects.


2011 ◽  
Vol 2 (4) ◽  
pp. 260-271 ◽  
Author(s):  
V. Nilsen ◽  
J. A. Lier ◽  
J. T. Bjerkholt ◽  
O. G. Lindholm

Climate change is expected to lead to an increased frequency and intensity of extreme precipitation events. For urban drainage, the primary adverse effects are more frequent and severe sewer overloading and flooding in urban areas, and higher discharges through combined sewer overflows (CSO). For assessing the possible effects of climate change, urban drainage models are run with climate-change-adjusted input data. However, current climate models are run on a spatial–temporal scale that is too coarse to resolve processes relevant to urban drainage modelling, in particular convective precipitation events. In the work reported here the delta-change method was used to develop a high-resolution time series of precipitation for the period 2071–2100 based on a recently produced climate model precipitation time series for Oslo. The present and future performance of the sewer networks was determined using MOUSE software. The simulations indicated future increases in annual CSO discharge of 33% when comparing years of maximum annual runoff. There is also an 83% increase in annual CSO discharge when comparing years of maximum annual precipitation. In addition, there are increases in the flooding of manholes and increased levels of backwater in pipes, which translates into more flooding of basements.


Author(s):  
Jennifer L. Castle ◽  
David F. Hendry

Shared features of economic and climate time series imply that tools for empirically modeling nonstationary economic outcomes are also appropriate for studying many aspects of observational climate-change data. Greenhouse gas emissions, such as carbon dioxide, nitrous oxide, and methane, are a major cause of climate change as they cumulate in the atmosphere and reradiate the sun’s energy. As these emissions are currently mainly due to economic activity, economic and climate time series have commonalities, including considerable inertia, stochastic trends, and distributional shifts, and hence the same econometric modeling approaches can be applied to analyze both phenomena. Moreover, both disciplines lack complete knowledge of their respective data-generating processes (DGPs), so model search retaining viable theory but allowing for shifting distributions is important. Reliable modeling of both climate and economic-related time series requires finding an unknown DGP (or close approximation thereto) to represent multivariate evolving processes subject to abrupt shifts. Consequently, to ensure that DGP is nested within a much larger set of candidate determinants, model formulations to search over should comprise all potentially relevant variables, their dynamics, indicators for perturbing outliers, shifts, trend breaks, and nonlinear functions, while retaining well-established theoretical insights. Econometric modeling of climate-change data requires a sufficiently general model selection approach to handle all these aspects. Machine learning with multipath block searches commencing from very general specifications, usually with more candidate explanatory variables than observations, to discover well-specified and undominated models of the nonstationary processes under analysis, offers a rigorous route to analyzing such complex data. To do so requires applying appropriate indicator saturation estimators (ISEs), a class that includes impulse indicators for outliers, step indicators for location shifts, multiplicative indicators for parameter changes, and trend indicators for trend breaks. All ISEs entail more candidate variables than observations, often by a large margin when implementing combinations, yet can detect the impacts of shifts and policy interventions to avoid nonconstant parameters in models, as well as improve forecasts. To characterize nonstationary observational data, one must handle all substantively relevant features jointly: A failure to do so leads to nonconstant and mis-specified models and hence incorrect theory evaluation and policy analyses.


Sign in / Sign up

Export Citation Format

Share Document