scholarly journals Simultaneous Spectrophotometric Determination of Elbasvir and Grazoprevir in a Pharmaceutical Preparation

2018 ◽  
Vol 101 (2) ◽  
pp. 394-400 ◽  
Author(s):  
Khalid A M Attia ◽  
Nasr M El-Abasawi ◽  
Ahmed El-Olemy ◽  
Ahmed H Abdelazim

Abstract Three UV spectrophotometric methods have been developed for the simultaneous determination of two new Food and Drug Administration-approved drugs, elbasvir (EBV) and grazoprevir (GRV), in their combined pharmaceutical dosage form. These methods include dual wavelength (DW), classic least-squares (CLS), and principal component regression (PCR). To achieve the DW method, two wavelengths were chosen for each drug in a way to ensure the difference in absorbance was zero from one drug to the other. GRV revealed equal absorbance at 351 and 315 nm, for which the distinctions in absorbance were measured for the determination of EBV. In the same way, distinctions in absorbance at 375 and 334.5 nm were measured for the determination of GRV. Alternatively, the CLS and PCR models were applied to the spectra analysis because the synchronous inclusion of many unreal wavelengths rather than using a single wavelength greatly increased the precision and predictive ability of the methods. The proposed methods were successfully applied to the assay of these drugs in their pharmaceutical formulation. The obtained results were statistically compared with manufacturing methods. The results conclude that there was no significant difference between the proposed methods and the manufacturing method with respect to accuracy and precision.

2017 ◽  
Vol 100 (5) ◽  
pp. 1379-1391 ◽  
Author(s):  
Maha F Abdel-Ghany ◽  
Omar Abdel-Aziz ◽  
Miriam F Ayad ◽  
Mariam M Tadros

Abstract New multivariate and univariate methods were developed for the analysis of two novel gliptin combinations by manipulating the zero-order and ratio spectra of empagliflozin and linagliptin in combination, with application on Glyxambi® tablets, and of alogliptin and pioglitazone in combination, with application on Oseni® tablets. Linearity ranges for chemometric approaches using principal component regression and partial least-squares were found to be 2–10, 2.5–12.5, 5–15, and 5–25 μg/mL for empagliflozin, linagliptin, alogliptin, and pioglitazone, respectively, whereas the respective linearity ranges for the spectrophotometric approaches were found to be 5–15, 2–12, 5–15, and 5–15 μg/mL. The proposed spectrophotometric methods included ratio subtraction coupled withextended ratio subtraction, spectrum subtraction coupled with constant multiplication, and mean centering. Acceptable LOD and LOQ values were obtained by all methods. Statistical analysis showed no significant difference between multivariate and univariate methods in comparison with the reference methods. The optimized methods provide fast and economic determination of the recently approved antidiabetic combinations without the complex instrumentation or time-consuming mobile phase preparations that were used in the chromatographic techniques reported in the literature.


2016 ◽  
Vol 99 (5) ◽  
pp. 1247-1251 ◽  
Author(s):  
Hamed M Elfatatry ◽  
Mokhtar M Mabrouk ◽  
Sherin F Hammad ◽  
Fotouh R Mansour ◽  
Amira H Kamal ◽  
...  

Abstract The present work describes new spectrophotometric methods for the simultaneous determination of phenylephrine hydrochloride and ketorolac tromethamine in their synthetic mixtures. The applied chemometric techniques are multivariate methods including classical least squares, principal component regression, and partial least squares. In these techniques, the concentration data matrix was prepared by using the synthetic mixtures containing these drugs dissolved in distilled water. The absorbance data matrix corresponding to the concentration data was obtained by measuring the absorbances at 16 wavelengths in the range 244–274 nm at 2 nm intervals in the zero-order spectra. The spectrophotometric procedures do not require any separation steps. The accuracy, precision, and linearity ranges of the methods have been determined, and analyzing synthetic mixtures containing the studied drugs has validated them. The developed methods were successfully applied to the synthetic mixtures and the results were compared to those obtained by a reported HPLC method.


2011 ◽  
Vol 94 (1) ◽  
pp. 128-135 ◽  
Author(s):  
Elif Karacan ◽  
Mehmet Gokhan Çaġlayan ◽  
İsmail Murat Palabiyik ◽  
Feyyaz Onur

Abstract A new RP-LC method and two new spectrophotometric methods, principal component regression (PCR) and first derivative spectrophotometry, are proposed for simultaneous determination of diflucortolone valerate (DIF) and isoconazole nitrate (ISO) in cream formulations. An isocratic system consisting of an ACE® C18 column and a mobile phase composed of methanol–water (95+5, v/v) was used for the optimal chromatographic separation. In PCR, the concentration data matrix was prepared by using synthetic mixtures containing these drugs in methanol–water (3+1, v/v). The absorbance data matrix corresponding to the concentration data matrix was obtained by measuring the absorbances at 29 wavelengths in the range of 242–298 nm for DIF and ISO in the zero-order spectra of their combinations. In first derivative spectrophotometry, dA/dλ values were measured at 247.8 nm for DIF and at 240.2 nm for ISO in first derivative spectra of the solution of DIF and ISO in methanol–water (3+1, v/v). The linear ranges were 4.00–48.0 μg/mL for DIF and 50.0–400 μg/mL for ISO in the LC method, and 2.40–40.0 μg/mL for DIF and 60.0–260 μg/mL for ISO in the PCR and first derivative spectrophotometric methods. These methods were validated by analyzing synthetic mixtures. These three methods were successfully applied to two pharmaceutical cream preparations.


2018 ◽  
Vol 101 (2) ◽  
pp. 414-426 ◽  
Author(s):  
Azza A Moustafa ◽  
Maha A Hegazy ◽  
Dalia Mohamed ◽  
Omnia Ali

Abstract The presence of coloring matters in syrups usually interferes with the spectrophotometric determination of active pharmaceutical ingredients. A novel approach was introduced to eliminate the interference of sunset yellow (coloring matter) in Cyrinol syrup. Smart, simple, accurate, and selective spectrophotometric methods were developed and validated for the simultaneous determination of a ternary mixture of carbinoxamine maleate, pholcodine, and ephedrine hydrochloride in syrup. Four of the applied methods used ratio spectra: successive derivative subtraction coupled with constant multiplication, successive derivative of ratio spectra, ratio subtraction coupled with ratio difference, and ratio spectra continuous wavelet transforms zero-crossing. In addition, a method that was based on the presence of an isosbestic point, the amplitude summation method, was also established. A major advantage of the proposed methods is the simultaneous determination of the mentioned drugs without prior separation steps. These methods were successfully applied for the determination of laboratory-prepared mixtures and a commercial pharmaceutical preparation without interference from additives, thus proving the selectivity of the methods. No significant difference regarding both accuracy and precision was observed upon statistical comparison of the results obtained by the proposed methods with each other and with those of official or reported ones.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (02) ◽  
pp. 45-50
Author(s):  
Umang Shah ◽  
Bhumika Desai ◽  
Vyomesh Nandrubarkar

Chemometry is the use of mathematical and statistical methods to improve the understanding of chemical information and to correlate quality parameters or physical properties to analytical instrument data. In the present work, two chemometric methods, named as principal component regression (PCR) and (PLS) based on the use of spectrophotometric data, were developed for simultaneous determination of clotrimazole (CLO) and beclomethasone dipropionate (BE C) in bulk and cream form. The absorbance of zero order UV spectra of CLO and BE C in the range of 80-400 μg/mL and 2-10 μg/mL, respectively were recorded in the wavelength range 230-272 nm at 3 nm wavelength intervals. Twenty-five (25) mixed solutions were prepared for the chemometric calibration as training set and sixteen varied solutions were prepared as a validation set. The suitability of the models was decided based on the RMSECV, RMSEP and PRESS values of calibration and validation data. The % recovery study of both the methods was compared, and it was found near each other. The assay of CLO and BE C for both the methods was found to be in the range of 99.78 to 101.20%. Hence, the proposed methods can be used for simultaneous analysis of the mixture of the drugs, without chemical pre-treatment, with good speed of analysis.


2018 ◽  
Vol 101 (4) ◽  
pp. 1001-1007
Author(s):  
Eman S Elzanfaly ◽  
Hala E Zaazaa ◽  
Aya T Soudi ◽  
Maissa Y Salem

Abstract Two multivariate validated spectrophotometric methods, namely partial least-squares (PLS) and principal component regression (PCR), were developed and validated for the determination of ibuprofen and famotidine in presence of famotidine degradation products and ibuprofen impurity (4-isobutylacetophenone). A calibration set was prepared in which the two drugs together with the degradation products and impurity were modeled using a multilevel multifactor design. This calibration set was used to build the PLS and PCR models. The proposed models successfully predicted the concentrations of both drugs in validation samples, with low root mean square error of cross validation (RMSECV) percentage. The method was validated by the estimate of the figures of merit depending on the net analyte signal. The results of the two models showed that the simultaneous determination of both drugs could be performed in the concentration ranges of 100–500 µg/mL for ibuprofen and 5–25 µg/mL for famotidine. The proposed multivariate calibration methods were applied for the determination of ibuprofen and famotidine in their pharmaceutical formulation, and the results were verified by the standard addition technique.


2016 ◽  
Vol 99 (4) ◽  
pp. 941-947
Author(s):  
Omar Abdel-Aziz ◽  
Emad M Hussien ◽  
Amira M El Kosasy ◽  
Neven Ahmed

Abstract Six simple, accurate, reproducible, and selective derivative spectrophotometric and chemometric methods have been developed and validated for the determination of levamisole HCl (Lev) either alone or in combination with closantel sodium (Clo) in the pharmaceutical dosage form. Lev was determined by first-derivative, first-derivative ratio, and mean-centering methods by measuring the peak amplitude at 220.8, 243.8, and 210.4 nm, respectively. The methods were linear over the concentration range 2.0–10.0 μg/mL Lev. The methods exhibited a high accuracy, with recovery data within ±1.9% and RSD <1.3% (n = 9) for the determination of Lev in the presence of Clo. Fortunately, Lev showed no significant UV absorbance at 370.6 nm, which allowed the determination of Clo over the concentration range 16.0–80.0 μg/mL using zero-order spectra, with a high precision (RSD <1.5%, n = 9). Furthermore, principal component regression and partial least-squares with optimized parameters were used for the determination of Lev in the presence of Clo. The recovery was within ±1%, with RSD <1.0% (n = 9) and root mean square error of prediction ≤1.0. The proposed methods were validated according to the International Conference on Harmonization guidelines. The proposed methods were used in the determination of Lev and Clo in a binary mixture and a pharmaceutical formulation, with high accuracy and precision.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1272
Author(s):  
Seetharaman Rathinam ◽  
Lakshmi Karunanidhi Santhana

This work introduces three eco-friendly UV spectrophotometric methods for the simultaneous estimation of Paracetamol, Aceclofenac and Eperisone Hydrochloride in pharmaceutical tablet formulation. The procedures employed were simultaneous equation method and multivariate chemometric methods with phosphate buffer pH 7.80 as diluent. The simultaneous equation method encompasses absorbance measurement at three different wavelengths (λmax of the drugs). It exhibits linearity between 12–18 µg mL−1 for paracetamol, 3.69–5.53 µg mL−1 for Aceclofenac, and 2.76–4.15 µg mL−1 Eperisone hydrochloride. The results obtained for accuracy and precision by the simultaneous equation method were within the permissible limits. Principal component regression and partial least squares were the tools used for chemometric methods. The calibration set and prediction set were constructed, and the UV spectra were recorded in zero order mode, further subjected to chemometric analysis. The % recoveries obtained for Paracetamol, Aceclofenac, and Eperisone Hydrochloride by chemometric techniques showed good accuracy, and the results obtained for analytical figures of merit were acceptable. Statistical comparison of the assay results obtained for the proposed methods showed no significant difference found among the methods using one way analysis of variance. Greenness evaluation tools revealed the greenness profile of the proposed methods and found them to be ecofriendly. The described methods were appropriate for routine quality control laboratories, facilitating eco-friendly, fast, and cost effective determination of Paracetamol, Aceclofenac, and Eperisone Hydrochloride in Acemyoset P tablets.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hayam M. Lotfy ◽  
Sarah S. Saleh

Several spectrophotometric approaches utilize different functions of the iso-absorptivity coefficient in zero-order absorption signals and its manipulated spectra. This work introduced an investigation concerning the efficiency power of recent methods based on iso-absorptivity coefficient in different spectral signals. These methods were as follows: absorptivity centering method (a-Centering), absorbance subtraction method (AS), amplitude modulation method (AM,) and amplitude summation method (A-Sum). These methods were applied to determine the binary mixture of ofloxacin (OFX) and dexamethasone (DXM). Linearity of the proposed methods was investigated in the range of 1.0–10.0 μg/ml for both drugs. The proposed methods were validated as per ICH guidelines and were successfully applied for the simultaneous determination of OFX and DXM in their pharmaceutical preparation without interference from additives. Statistical analysis of the results obtained by the proposed spectrophotometric methods compared with a reported method revealed no significant difference between the proposed and reported methods, confirming accuracy and precision at 95% confidence limit.


2018 ◽  
Vol 101 (3) ◽  
pp. 714-722 ◽  
Author(s):  
Christine K Nessim ◽  
Adel M Michael ◽  
Yasmin M Fayez ◽  
Hayam M Lotfy

Abstract Two simple and accurate chemometric-assisted spectrophotometric models were developed and validated for the simultaneous determination of chlordiazepoxide (CDZ) and clidinium bromide (CDB) in the presence of an alkali-induced degradation product of CDB in their pure and pharmaceutical formulation. Resolution was accomplished by using two multivariate calibration models, including principal component regression (PCR) and partial least-squares (PLS), applied to the UV spectra of the mixtures. Great improvement in the predictive abilities of these multivariate calibrations was observed. A calibration set was constructed and the best model used to predict the concentrations of the studied drugs. CDZ and CDB were analyzed with mean accuracies of 99.84 ± 1.41 and 99.81 ± 0.89% for CDZ and 99.56 ± 1.43 and 99.44 ± 1.41% for CDB using PLS and PCR models, respectively. The proposed models were validated and applied for the analysis of a commercial formulation and laboratory-prepared mixtures. The developed models were statistically compared with those of the official and reported methods with no significant differences observed. The models can be used for the routine analysis of both drugs in QC laboratories.


Sign in / Sign up

Export Citation Format

Share Document