Ultrasound-Assisted Ionic Liquid-Dispersive Liquid–Liquid of Curcumin in Food Samples Microextraction and Its Spectrophotometric Determination

2019 ◽  
Vol 102 (1) ◽  
pp. 217-221 ◽  
Author(s):  
Yunus Emre Unsal ◽  
Mustafa Tuzen ◽  
Mustafa Soylak

Abstract Background: A rapid and new ultrasound-assisted ionic liquid-dispersive liquid–liquid microextraction method (UA-IL-DLLME) was presented for the determination of curcumin by spectrophotometry. Objective: To determine trace levels of curcumin in food samples by using green and low-cost method development. Methods: 1-Butyl-3-methylimidazolium hexafluorophosphate was used to extract curcumin from sample solutions with the aid of sonication. Optimum extraction efficiency was determined by examining extraction solvents, pH, centrifugation speed, time, sonication period, and temperature. The influences of diverse ions on the recovery of curcumin were examined. The concentration of curcumin in the final solution was measured by spectrophotometer at 425 nm. Results: The enrichment factor achieved was 167. The LOD and the RSD were 0.51 μg/L and 4.3%, respectively. The presented method was performed to detect curcumin in 20 food samples. Conclusions: The presented UA-IL-DLLME method is simple, low in cost, environmentally friendly, rapid, and sensitive and requires minimal use of toxic organic solvents. Highlights: A microextraction method was applied to increase sensitivity. Higher enrichment factors and lower detection limits were observed. The proposed technique is easy, cost-effective, accurate, and precise.

2014 ◽  
Vol 97 (1) ◽  
pp. 183-187 ◽  
Author(s):  
Run-Zhen Fan ◽  
Congyun Liu ◽  
Wenqing Jiang ◽  
Xiaonan Wang ◽  
Fengmao Liu

Abstract Ultrasound-assisted dispersive liquid–liquid microextraction (UA-DLLME) based on solidification of the floating organic solvent droplets (SFO) combined with HPLC was used for determination of five fungicides in fruit juice samples. 1-Dodecanol, which has a low density and low toxicity, was used as the extraction solvent in UA-DLLME. The solidification of floating organic dropletsfacilitates the transfer of analytes from the aqueous phase to the organic phase. This method was easy, quick, inexpensive, precise, and linear over a wide range. Under the optimized conditions, the enrichment factors for a 5 mL fruit juice sample were 25 to 56, and the LODs for the five fungicides ranged from 5 to 50 μg/L. The average recoveries ranged from 71.8 to 118.2% with RSDsof 0.9 to 13.9%. Application of the DLLME-SFO technique allows successful separation and preconcentration of the fungicides at a low concentration level in fruit juice samples.


2014 ◽  
Vol 675-677 ◽  
pp. 181-184 ◽  
Author(s):  
Gui Qi Huang ◽  
She Ying Dong ◽  
Zhen Yang ◽  
Ting Lin Huang

An ultrasound-assisted ionic liquid based dispersive liquid-liquid microextraction (UA-IL-DLLME) was developed for the determination of four plant hormones (6-benzyladenine (6-BA), kinetin (6-KT), 2, 4-dichlorophenoxy acetic acid (2, 4-D) and uniconazole (UN)) in soil, using high performance liquid chromatography (HPLC)-diode array detection (DAD). Several important parameters including the type and volume of extraction solvent, the volume of disperser solvent, ultrasound time, pH of the solution and salt effect were studied and optimized. Under optimum conditions, the limits of detections (LODs) for the target analytes were in the range of 0.002-0.01 μg g-1. And satisfactory recoveries of the target analytes in the soil samples were 79.3-96.7 %, with relative standard deviations (RSD, n=5) that ranged from 4.3 to 6.7%.


2020 ◽  
Vol 58 (5) ◽  
pp. 477-484 ◽  
Author(s):  
Rajeev Jain ◽  
Rohitashva Mani Tripathi ◽  
Archna Negi ◽  
Shishir Pratap Singh

Abstract A simple, rapid, cost-effective and green analytical method is developed based on ultrasound-assisted dispersive liquid–liquid microextraction (US-DLLME) coupled to thin-layer chromatography (TLC)-image analysis for the simultaneous determination of two major alkaloids of Strychnos nux-vomica L i.e., strychnine and brucine. The method is composed of three steps, namely (i) US-DLLME by injecting a mixture of 100-μL chloroform (extraction solvent) and 1-mL methanol (disperser solvent) in 5 mL of aqueous sample, followed by ultrasonication and centrifugation, (ii) TLC of 20 μL of sedimented phase with methanol: ammonia (100:1.5, v/v) as the mobile phase and visualization under ultraviolet radiation (254 nm) and (iii) photography of TLC plate and quantification of spots by image analysis using freely available imageJ software (National Institute of Health, Bethesda, MD, USA). The limit of detection and limit of quantification for both alkaloids were found to be in the range of 0.12–0.15 and 0.36–0.48 μg/spot, respectively. The method was found to be linear in the range of 0.5–5 μg/spot with correlation coefficient (R2) of 0.995 and 0.997 for strychnine and brucine, respectively. The developed method was successfully applied for the determination of strychnine and brucine in Ayurvedic formulations and blood samples. The method does not require any sophisticated instrument and handling skills and can be adopted for rapid analysis of strychnine and brucine in forensic toxicological laboratories.


Sign in / Sign up

Export Citation Format

Share Document