scholarly journals Forensic Fractography of Bone

2021 ◽  
Author(s):  
Angi Christensen ◽  
John Rickman ◽  
Hugh Berryman

Fractography involves the study of fractures and cracks in a material in order to understand the cause of failure. Even as a complex, highly hierarchical composite, bone is a material that obeys physical laws, including cracking behavior. The fields of fractography and fracture mechanics, therefore, have much to offer in our understanding of bone’s response to loading and force. Here we discuss how fractography can be used in the assessment of fractures originating from impacts including those from projectiles. Fractures and fracture patterns frequently associated with impact trauma—including radial fractures, circumferential fractures, and beveling—are described and used interpretively in forensic analyses; however, the mechanisms for their production and arrangement are often underutilized in fully understanding the trauma event. These mechanisms are reviewed here from a fractography perspective. Furthermore, a review is presented of new data indicating that beveling in bone associated with impacts, especially with projectiles, is produced by cone cracking, a process that is also well documented in other brittle materials. This information can be used to enhance understanding of impact trauma in general, as well as in the context of specific forensic cases. Moreover, describing and interpreting skeletal trauma within the context of fracture mechanics and fractography has the advantage of aligning the nomenclature used in forensic anthropology with that used in other scientific fields, particularly those involved in the study of material failure. To facilitate this alignment, we provide discussion and definitions for various fractography-related terms.

2011 ◽  
Vol 320 ◽  
pp. 259-262
Author(s):  
Xu Ran ◽  
Zhe Ming Zhu ◽  
Hao Tang

The mechanical behavior of multi-cracks under compression has become a very important project in the field of fracture mechanics and rock mechanics. In this paper, based on the previous theoretical results of the failure criterion for brittle materials under compression, experiment study is implemented. The specimens are square plates and are made of cement, sand and water, and the cracks are made by using a very thin film (0.1 mm). The relations of material compressive strength versus crack spacing and the lateral confining stress are obtained from experimental results. The experimental results agree well with the failure criterion for brittle materials under compression, which indicates that the criterion is effective and applicable.


CORROSION ◽  
1974 ◽  
Vol 30 (5) ◽  
pp. 181-189 ◽  
Author(s):  
W. F. CZYRKLIS ◽  
M. LEVY

Abstract The stress corrosion cracking (SCC) behavior of U-3/4% Ti, and uranium alloys 3/4% Quad, 1% Quad, and 1% Quint have been studied utilizing a linear elastic fracture mechanics approach. The threshold stress intensities for stress corrosion crack propagation for these alloys have been determined in distilled H2O and NaCl solutions containing 50 ppm Cl− and 21,000 ppm Cl−. All of the alloys studied may be classified as very susceptible to SCC in aqueous solutions since they exhibit SCC in distilled H2O (<1 ppm Cl−) and have low KIscc values in NaCl solutions. Crack extension in all of the alloys in all environments was transgranular and failure occurred by brittle quasicleavage fracture in NaCl solution.


2009 ◽  
Vol 409 ◽  
pp. 1-16 ◽  
Author(s):  
George D. Quinn

The evolution of the science of fractography of brittle materials initially was driven by failure analysis problems. Early analyses focused on general patterns of fracture and how they correlated to the loading conditions. Many early documents are simply descriptive, but the curiosity of some key scientists and engineers was aroused. Scientific or engineering explanations for the observed patterns gradually were developed. Advances in microscopy and flaw based theories of strength and fracture mechanics led to dramatic advances in the state of the art of fractographic analysis of brittle materials. Introduction: This author was drawn backwards in time as he researched the current state of the art of fractographic analysis of brittle materials for his fractography guide book.[ ] Others have written about how the fractographic analysis of metals evolved (e.g., [ , , , ]), but there is no analogue for ceramics and glasses. The key scientists, engineers, and analysts who contributed to our field are shown in Fig. 1. Other work done by industry workers who were unable or loathe to publish is now lost, inaccessible, forgotten, or even discarded. It is the goal of this paper to review the key publications and mark the noteworthy advances in the field. Some deem fractography as the study of fracture surfaces, but this author takes a broader view. Fractography is the means and methods for characterizing fractured specimens or components and, for example, a simple examination of the fragments and how they fit together to study the overall breakage pattern is a genuine fractographic analysis.


1994 ◽  
Vol 22 (1) ◽  
pp. 1-13 ◽  
Author(s):  
G. S. Schajer

This note discusses some basic concepts underlying isotropic material failure criteria under multiaxial loadings. It also describes the shapes and features of the associated failure surfaces in three-dimensional stress space. Failure criteria for ductile materials are first reviewed. They are then generalized so that they may also be applied to brittle materials. The relationships among the various failure criteria, the shapes and characteristics of the associated failure surfaces, and the special features of physically acceptable isotropic failure criteria are then considered.


2004 ◽  
Vol 261-263 ◽  
pp. 1055-1060 ◽  
Author(s):  
Kazushi Sato ◽  
Toshiyuki Hashida

In this paper, cracking behavior of distributed microcracks is discussed using a numerical simulation. The microcracks are initially distributed in a rectangle region. The directions and locations of the cracks are chosen at random. Three kinds of length distributions are used, such as a uniform length, a random length distribution and a fractal length distribution. The crack propagations from the initially distributed cracks are analyzed under a uniaxial tensile load using liner elastic fracture mechanics. The global behaviors of various crack distribution are studied. Results obtained from the numerical calculations indicate that the effect of the crack length distribution is minor in term of the macroscopic behavior of the cracked body.


Sign in / Sign up

Export Citation Format

Share Document