AN OPTIMIZED ENERGY-EFFICIENT PATH FOLLOWING ALGORITHM FOR UNDERACTUATED MARINE SURFACE SHIP MODEL

Author(s):  
Haitong Xu ◽  
C Guedes Soares

An optimized path following guidance law is proposed for path-following of an underactuated surface ship. The main purpose of the proposed guidance law is to make a marine vessel travel with more energy efficiency. A combined feedback and feedforward controller is used for the heading control. The feedforward term is designed based on the well-known Nomoto model, whose parameters are estimated using least-square support vector regression. In order to achieve optimal operation of a marine vessel, a global optimization algorithm is employed to search the regularization factors, which are the trade-off between the total cross-track errors and total control energy. The simulation studies are carried out to demonstrate the performance of the proposed guidance law. The proposed method is an effective and practical guidance law and provide an optimal option for marine navigator.

2018 ◽  
Vol Vol 160 (A4) ◽  
Author(s):  
Haitong Xu ◽  
C Guedes Soares

An optimized path following guidance law is proposed for path-following of an underactuated surface ship. The main purpose of the proposed guidance law is to make a marine vessel travel with more energy efficiency. A combined feedback and feedforward controller is used for the heading control. The feedforward term is designed based on the well-known Nomoto model, whose parameters are estimated using least-square support vector regression. In order to achieve optimal operation of a marine vessel, a global optimization algorithm is employed to search the regularization factors, which are the trade-off between the total cross-track errors and total control energy. The simulation studies are carried out to demonstrate the performance of the proposed guidance law. The proposed method is an effective and practical guidance law and provide an optimal option for marine navigator.


2020 ◽  
Vol 162 (A3) ◽  
Author(s):  
Haitong Xu ◽  
C Guedes Soares

A vector field guidance law and control system for curved path following of an underactuated surface ship model is presented in this paper. In order to obtain the curved path, continuous derivatives piecewise cubic Hermite interpolation is applied for path generation based on the predefined waypoints. A heading autopilot controller is designed based on 2nd order Nomoto’s model and its stability is guaranteed by the Diagram of Vyshnegradsky method. The parameters of Nomoto model are estimated using least square support vector machine based on the manoeuvring tests. The vector field guidance law is applied for both straight and curved path-following control of an underactuated surface ship model. In order to demonstrate the performance, the classical guidance law based on line-of-sight, is adopted for comparison. The results show that the vector field method is capable to solve the guidance problem of underactuated surface ships.


Author(s):  
Haitong Xu ◽  
C Guedes Soares

A vector field guidance law and control system for curved path following of an underactuated surface ship model is presented in this paper. In order to obtain the curved path, continuous derivatives piecewise cubic Hermite interpolation is applied for path generation based on the predefined waypoints. A heading autopilot controller is designed based on 2nd order Nomoto’s model and its stability is guaranteed by the Diagram of Vyshnegradsky method. The parameters of Nomoto model are estimated using least square support vector machine based on the manoeuvring tests. The vector field guidance law is applied for both straight and curved path-following control of an underactuated surface ship model. In order to demonstrate the performance, the classical guidance law based on line-of-sight, is adopted for comparison. The results show that the vector field method is capable to solve the guidance problem of underactuated surface ships.


2021 ◽  
Vol 9 (2) ◽  
pp. 166
Author(s):  
Zhanshuo Zhang ◽  
Yuhan Zhao ◽  
Guang Zhao ◽  
Hongbo Wang ◽  
Yi Zhao

A new type of path-following method has been developed to steer marine surface vehicles along desired paths. Path-following is achieved by a new hyperbolic guidance law for straight-line paths and a backstepping control law for curved paths. An optimal controller has been improved for heading control, based on linear quadratic regulator (LQR) theory with nonlinear feedback control techniques. The control algorithm performance is validated by simulation and comparison against the requirements of International Standard IEC62065. Deviations are within the allowable range of the standard. In addition, the experimental results show that the proposed method has higher control accuracy.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1543-1549
Author(s):  
Yu Ling Ye

An engineering approach of path following control for the type of under-actuated AUV, such as REMUS, was proposed. The path following control was separated into 2 parts: heading guidance and heading control. The heading guidance was designed based on the cross-track error and line of sight guidance, and sideslip angle was proposed to compensate the disturbance of the ocean current. The turning criterion was proposed when the vehicle approach the waypoint. A PD control algorithm was presented to the heading control and its parameters variable with the speed. Simulation and field experiments data show that the vehicle follows the path accurately in the environment of current and different speed, and the vertical rudder keeps steady without large scope and high frequency oscillation which is fit for the long-time working AUV. Engineers can debug the parameters based on the experiment data efficiently for their explicit physical meaning.


2021 ◽  
Author(s):  
Mingzhen Lin ◽  
Zhiqiang Zhang ◽  
Yandong Pang ◽  
Hongsheng Lin ◽  
Qing Ji

Abstract The path following control under disturbance was studied for an underactuated unmanned surface vehicle (USV) subject to the rudder angle and velocity constraints. For this reason, a variable look-ahead integral line-of-sight (LOS) guidance law was designed on the basis of the disturbance estimation and compensation, and a cascade path following control system was created following the heading control law based on the model prediction. Firstly, the guidance law was designed using the USV three-degree-of-freedom (DOF) motion model and the LOS method, while the tracking error state was introduced to design the real-time estimation of disturbance observer and compensate for the influence of ocean current. Moreover, the stability of the system was analyzed. Secondly, sufficient attention was paid to the rudder angle and velocity constraints and the influence of system delay and other factors in the process of path following when the heading control law was designed with the USV motion response model and the model predictive control (MPC). The moving horizon optimization strategy was adopted to achieve better dynamic performance, effectively overcome the influence of model and environmental uncertainties, and further prove the stability of the control law. Thirdly, a simulation experiment was carried out to verify the effectiveness and advancement of the proposed algorithm. Fourthly, the “Sturgeon 03” USV was used in the lake test of the proposed control algorithm to prove its feasibility in the engineering practices.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhengyang Cui ◽  
Yong Wang

With growing worldwide interests in commercial, scientific, and military issues, there has been a corresponding rapid growth in demand for the development of unmanned aerial vehicles (UAVs) with more reliable and safer motion control abilities. This paper presents a new nonlinear path following scheme integrated with a heading control law for achieving accurate and reliable path following performance. Both backstepping and finite-time techniques are employed for developing the path following and heading control strategies capable of minimizing cross-track errors in finite-time with elegant transient performance, while the barrier Lyapunov function scheme is adopted to limit turning rates of the UAV for preventing it from capsizing which may be induced by overquick steering actions. A fixed-time nonlinear estimator, based on UAV kinematics, is designed for estimating the uncertainties with sideslip angles caused by external disturbances and inertial motions. To avoid the complicated calculation of derivatives of virtual control terms in backstepping, command filters and auxiliary systems are likewise introduced in the design of control laws. Extensive numerical simulation studies on a nonlinear UAV model are conducted to demonstrate the effectiveness of the proposed methodologies.


Sign in / Sign up

Export Citation Format

Share Document