scholarly journals Leader Follower Formation Control for Underwater Transportation Using Multiple Autonomous Underwater Vehicles

2021 ◽  
Vol 163 (A3) ◽  
Author(s):  
F U Rehman ◽  
E Anderlini ◽  
G Thomas

The successful ability to conduct underwater transportation using multiple autonomous underwater vehicles (AUVs) is important for the commercial sector to undertake precise underwater installations on large modules, whilst for the military sector it has the added advantage of improved secrecy for clandestine operations. The technical requirements are the stability of the payload and internal collision avoidance while keeping track of the desired trajectory considering the underwater effects. Here, a leader-follower formation control strategy was developed and implemented on the transportation system of AUVs. PID controllers were used for the vehicles and a linear feedback controller for maintaining the formation. A Kalman Filter (KF) was designed to estimate the full state of the leader under disturbance, noise and limited sensor readings. The results demonstrate that though the technical requirements are met, the thrust oscillations under disturbance and noise produce the undesired heading angles.  

Author(s):  
Bo Li ◽  
Tsung-Chow Su

Inspired by the designs of underwater gliders, hybrid autonomous underwater vehicles (AUVs) have emerged recently, which use internal actuators instead of control surfaces to control the heading angle and depth of the vehicles. In this paper, we focus on controlling the heading angle of a REMUS AUV by using an internal moving mass. We derive a nonlinear dynamical model of the vehicle with hydrodynamic forces and coupling between the vehicle and the internal moving mass. The model is used to study the stability of the horizontal-plane motion of the vehicle and to design a linear feedback law to stabilize its heading angle around a desired direction. Simulation results demonstrate that a controlled internal moving mass is able to fulfill the purpose of heading control.


2014 ◽  
Vol 641-642 ◽  
pp. 1264-1268
Author(s):  
Zi Qi Lin ◽  
Yong Jie Pang ◽  
Da Peng Jiang

While the single AUV is sometimes unable to meet the complex and difficult tasks demand, the advantages of the multiple autonomous underwater vehicles (MAUV) system was proposed. Several MAUV formation methods were studied and master-slave collaborative formation method was focused. The law and algorithm of master-slave formation control was designed and analyzed. Representative formations for different tasks were proposed and the advantages and disadvantages were discussed.


2021 ◽  
Vol 33 (1) ◽  
pp. 151-157
Author(s):  
Akihiro Okamoto ◽  
◽  
Motonobu Imasato ◽  
Shunka C. Hirao ◽  
Hidenori Sekiguchi ◽  
...  

The formation control of multiple autonomous underwater vehicles (AUVs) is increasingly becoming a vital factor in enhancing the efficiency of ocean resources exploration. However, it is currently difficult to deploy such a package of AUVs for operation at sea because of their large size. The aim of our study is to create a demonstration system for formation control algorithms using actual hardware. To implement a prototype system, we developed a testbed AUV usable in a test basin and performed a simple formation control test in the Actual Sea Model Basin of the National Maritime Research Institute, Japan. Two AUVs, the simulated “virtual” leader and the developed “real” follower, communicate through an acoustic link and hence cruise to maintain a constant distance between them. Tests for more sophisticated formation control algorithms will be enabled using the system; consequently rapid implementation at sea will be realized.


Author(s):  
Verica Radisavljevic-Gajic ◽  
Milos Milanovic

A new technique was presented that facilitates design of independent full-state feedback controllers at the subsystem levels. Different types of local controllers, for example, eigenvalue assignment, robust, optimal (in some sense L1, H2, H∞, ...) may be used to control different subsystems. This feature has not been available for any known linear feedback controller design. In the second part of the paper, we specialize the results obtained to the three time-scale linear systems (singularly perturbed control systems) that have natural decomposition into slow, fast, and very fast subsystems. The proposed technique eliminates numerical ill-condition of the original three-time scale problems.


Sign in / Sign up

Export Citation Format

Share Document