scholarly journals A comparison between Entity-Centric Knowledge Base and Knowledge Graph to Represent Semantic Relationships for Searching as Learning Situations

Author(s):  
Marcelo Tibau ◽  
Sean Siqueira ◽  
Bernardo Pereira Nunes
2020 ◽  
Vol 10 (8) ◽  
pp. 2651
Author(s):  
Su Jeong Choi ◽  
Hyun-Je Song ◽  
Seong-Bae Park

Knowledge bases such as Freebase, YAGO, DBPedia, and Nell contain a number of facts with various entities and relations. Since they store many facts, they are regarded as core resources for many natural language processing tasks. Nevertheless, they are not normally complete and have many missing facts. Such missing facts keep them from being used in diverse applications in spite of their usefulness. Therefore, it is significant to complete knowledge bases. Knowledge graph embedding is one of the promising approaches to completing a knowledge base and thus many variants of knowledge graph embedding have been proposed. It maps all entities and relations in knowledge base onto a low dimensional vector space. Then, candidate facts that are plausible in the space are determined as missing facts. However, any single knowledge graph embedding is insufficient to complete a knowledge base. As a solution to this problem, this paper defines knowledge base completion as a ranking task and proposes a committee-based knowledge graph embedding model for improving the performance of knowledge base completion. Since each knowledge graph embedding has its own idiosyncrasy, we make up a committee of various knowledge graph embeddings to reflect various perspectives. After ranking all candidate facts according to their plausibility computed by the committee, the top-k facts are chosen as missing facts. Our experimental results on two data sets show that the proposed model achieves higher performance than any single knowledge graph embedding and shows robust performances regardless of k. These results prove that the proposed model considers various perspectives in measuring the plausibility of candidate facts.


2021 ◽  
Vol 13 (1) ◽  
pp. 14
Author(s):  
Xiaolin Zhang ◽  
Chao Che

The prevalence of Parkinson’s disease increases a tremendous medical and economic burden to society. Therefore, the effective drugs are urgently required. However, the traditional development of effective drugs is costly and risky. Drug repurposing, which identifies new applications for existing drugs, is a feasible strategy for discovering new drugs for Parkinson’s disease. Drug repurposing is based on sufficient medical knowledge. The local medical knowledge base with manually labeled data contains a large number of accurate, but not novel, medical knowledge, while the medical literature containing the latest knowledge is difficult to utilize, because of unstructured data. This paper proposes a framework, named Drug Repurposing for Parkinson’s disease by integrating Knowledge Graph Completion method and Knowledge Fusion of medical literature data (DRKF) in order to make full use of a local medical knowledge base containing accurate knowledge and medical literature with novel knowledge. DRKF first extracts the relations that are related to Parkinson’s disease from medical literature and builds a medical literature knowledge graph. After that, the literature knowledge graph is fused with a local medical knowledge base that integrates several specific medical knowledge sources in order to construct a fused medical knowledge graph. Subsequently, knowledge graph completion methods are leveraged to predict the drug candidates for Parkinson’s disease by using the fused knowledge graph. Finally, we employ classic machine learning methods to repurpose the drug for Parkinson’s disease and compare the results with the method only using the literature-based knowledge graph in order to confirm the effectiveness of knowledge fusion. The experiment results demonstrate that our framework can achieve competitive performance, which confirms the effectiveness of our proposed DRKF for drug repurposing against Parkinson’s disease. It could be a supplement to traditional drug discovery methods.


2021 ◽  
Vol 68 ◽  
pp. 100638
Author(s):  
Majid Asgari-Bidhendi ◽  
Behrooz Janfada ◽  
Behrouz Minaei-Bidgoli

2021 ◽  
Vol 13 (4) ◽  
pp. 2276
Author(s):  
Taejin Kim ◽  
Yeoil Yun ◽  
Namgyu Kim

Many attempts have been made to construct new domain-specific knowledge graphs using the existing knowledge base of various domains. However, traditional “dictionary-based” or “supervised” knowledge graph building methods rely on predefined human-annotated resources of entities and their relationships. The cost of creating human-annotated resources is high in terms of both time and effort. This means that relying on human-annotated resources will not allow rapid adaptability in describing new knowledge when domain-specific information is added or updated very frequently, such as with the recent coronavirus disease-19 (COVID-19) pandemic situation. Therefore, in this study, we propose an Open Information Extraction (OpenIE) system based on unsupervised learning without a pre-built dataset. The proposed method obtains knowledge from a vast amount of text documents about COVID-19 rather than a general knowledge base and add this to the existing knowledge graph. First, we constructed a COVID-19 entity dictionary, and then we scraped a large text dataset related to COVID-19. Next, we constructed a COVID-19 perspective language model by fine-tuning the bidirectional encoder representations from transformer (BERT) pre-trained language model. Finally, we defined a new COVID-19-specific knowledge base by extracting connecting words between COVID-19 entities using the BERT self-attention weight from COVID-19 sentences. Experimental results demonstrated that the proposed Co-BERT model outperforms the original BERT in terms of mask prediction accuracy and metric for evaluation of translation with explicit ordering (METEOR) score.


Author(s):  
Chao Shang ◽  
Yun Tang ◽  
Jing Huang ◽  
Jinbo Bi ◽  
Xiaodong He ◽  
...  

Knowledge graph embedding has been an active research topic for knowledge base completion, with progressive improvement from the initial TransE, TransH, DistMult et al to the current state-of-the-art ConvE. ConvE uses 2D convolution over embeddings and multiple layers of nonlinear features to model knowledge graphs. The model can be efficiently trained and scalable to large knowledge graphs. However, there is no structure enforcement in the embedding space of ConvE. The recent graph convolutional network (GCN) provides another way of learning graph node embedding by successfully utilizing graph connectivity structure. In this work, we propose a novel end-to-end StructureAware Convolutional Network (SACN) that takes the benefit of GCN and ConvE together. SACN consists of an encoder of a weighted graph convolutional network (WGCN), and a decoder of a convolutional network called Conv-TransE. WGCN utilizes knowledge graph node structure, node attributes and edge relation types. It has learnable weights that adapt the amount of information from neighbors used in local aggregation, leading to more accurate embeddings of graph nodes. Node attributes in the graph are represented as additional nodes in the WGCN. The decoder Conv-TransE enables the state-of-the-art ConvE to be translational between entities and relations while keeps the same link prediction performance as ConvE. We demonstrate the effectiveness of the proposed SACN on standard FB15k-237 and WN18RR datasets, and it gives about 10% relative improvement over the state-of-theart ConvE in terms of HITS@1, HITS@3 and HITS@10.


10.29007/fvc9 ◽  
2019 ◽  
Author(s):  
Gautam Kishore Shahi ◽  
Durgesh Nandini ◽  
Sushma Kumari

Schema.org creates, supports and maintain schemas for structured data on the web pages. For a non-technical author, it is difficult to publish contents in a structured format. This work presents an automated way of inducing Schema.org markup from natural language context of web-pages by applying knowledge base creation technique. As a dataset, Web Data Commons was used, and the scope for the experimental part was limited to RDFa. The approach was implemented using the Knowledge Graph building techniques - Knowledge Vault and KnowMore.


Author(s):  
Xiang Wang ◽  
Dingxian Wang ◽  
Canran Xu ◽  
Xiangnan He ◽  
Yixin Cao ◽  
...  

Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user’s interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path.In this paper, we contribute a new model named Knowledgeaware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.


Sign in / Sign up

Export Citation Format

Share Document