scholarly journals Multiclass decomposition and Artificial Neural Networks for intrusion detection and identification in Internet of Things environments

2021 ◽  
Author(s):  
Cristiano Antonio de Souza ◽  
João Vitor Cardoso ◽  
Carlos Becker Westphall

The Internet of Things (IoT) systems have limited resources, making it difficult to implement some security mechanisms. It is important to detect attacks against these environments and identify their type. However, existing multi-class detection approaches present difficulties related to false positives and detection of less common attacks. Thus, this work proposes an approach with a two-stage analysis architecture based on One-Vs-All (OVA) and Artificial Neural Networks (ANN) to detect and identify intrusions in fog and IoT computing environments. The results of experiments with the Bot-IoT dataset demonstrate that the approach achieved promising results and reduced the number of false positives compared to state-of-the-art approaches and machine learning techniques.

Author(s):  
Mehmet Fatih Bayramoglu ◽  
Cagatay Basarir

Investing in developed markets offers investors the opportunity to diversify internationally by investing in foreign firms. In other words, it provides the possibility of reducing systematic risk. For this reason, investors are very interested in developed markets. However, developed are more efficient than emerging markets, so the risk and return can be low in these markets. For this reason, developed market investors often use machine learning techniques to increase their gains while reducing their risks. In this chapter, artificial neural networks which is one of the machine learning techniques have been tested to improve internationally diversified portfolio performance. Also, the results of ANNs were compared with the performances of traditional portfolios and the benchmark portfolio. The portfolios are derived from the data of 16 foreign companies quoted on NYSE by ANNs, and they are invested for 30 trading days. According to the results, portfolio derived by ANNs gained 10.30% return, while traditional portfolios gained 5.98% return.


2010 ◽  
Vol 138 (5) ◽  
pp. S-824-S-825 ◽  
Author(s):  
Jacob M. Feagans ◽  
Robert D. Gatliff ◽  
David Victor ◽  
Fredric Regenstein ◽  
Sander S. Florman

2014 ◽  
pp. 126-134
Author(s):  
Akira Imada

This article is a consideration on computer network intrusion detection using artificial neural networks, or whatever else using machine learning techniques. We assume an intrusion to a network is like a needle in a haystack not like a family of iris flower, and we consider how an attack can be detected by an intelligent way, if any.


2021 ◽  
Vol 19 (1) ◽  
pp. 134-145
Author(s):  
Abdulwahab Ali Almazroi ◽  

<abstract><p>Cardiovascular diseases are regarded as the most common reason for worldwide deaths. As per World Health Organization, nearly $ 17.9 $ million people die of heart-related diseases each year. The high shares of cardiovascular-related diseases in total worldwide deaths motivated researchers to focus on ways to reduce the numbers. In this regard, several works focused on the development of machine learning techniques/algorithms for early detection, diagnosis, and subsequent treatment of cardiovascular-related diseases. These works focused on a variety of issues such as finding important features to effectively predict the occurrence of heart-related diseases to calculate the survival probability. This research contributes to the body of literature by selecting a standard well defined, and well-curated dataset as well as a set of standard benchmark algorithms to independently verify their performance based on a set of different performance evaluation metrics. From our experimental evaluation, it was observed that decision tree is the best performing algorithm in comparison to logistic regression, support vector machines, and artificial neural networks. Decision trees achieved $ 14 $% better accuracy than the average performance of the remaining techniques. In contrast to other studies, this research observed that artificial neural networks are not as competitive as the decision tree or support vector machine.</p></abstract>


2020 ◽  
Author(s):  
Anbiao Huang ◽  
Shuo Gao ◽  
Arokia Nathan

In Internet of Things (IoT) applications, among various authentication techniques, keystroke authentication methods based on a user’s touch behavior have received increasing attention, due to their unique benefits. In this paper, we present a technique for obtaining high user authentication accuracy by utilizing a user’s touch time and force information, which are obtained from an assembled piezoelectric touch panel. After combining artificial neural networks with the user’s touch features, an equal error rate (EER) of 1.09% is achieved, and hence advancing the development of security techniques in the field of IoT.


2016 ◽  
pp. 89-112
Author(s):  
Pushpendu Kar ◽  
Anusua Das

The recent craze for artificial neural networks has spread its roots towards the development of neuroscience, pattern recognition, machine learning and artificial intelligence. The theoretical neuroscience is basically converging towards the basic concept that the brain acts as a complex and decentralized computer which can perform rigorous calculations in a different approach compared to the conventional digital computers. The motivation behind the study of neural networks is due to their similarity in the structure of the human central nervous system. The elementary processing component of an Artificial Neural Network (ANN) is called as ‘Neuron'. A large number of neurons interconnected with each other mimic the biological neural network and form an ANN. Learning is an inevitable process that can be used to train an ANN. We can only transfer knowledge to the neural network by the learning procedure. This chapter presents the detailed concepts of artificial neural networks in addition to some significant aspects on the present research work.


2020 ◽  
Vol 10 (17) ◽  
pp. 5734
Author(s):  
Chee Soon Lim ◽  
Edy Tonnizam Mohamad ◽  
Mohammad Reza Motahari ◽  
Danial Jahed Armaghani ◽  
Rosli Saad

To design geotechnical structures efficiently, it is important to examine soil’s physical properties. Therefore, classifying soil with respect to geophysical parameters is an advantageous and popular approach. Novel, quick, cost, and time effective machine learning techniques can facilitate this classification. This study employs three kinds of machine learning models, including the Decision Tree, Artificial Neural Networks, and Bayesian Networks. The Decision tree models included the chi-square automatic interaction detection (CHAID), classification and regression trees (CART), quick, unbiased, and efficient statistical tree (QUEST), and C5; the Artificial Neural Networks models included Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF); and BN models included the Tree Augmented Naïve (TAN) and Markov Blanket, which were employed to predict the soil classifications using geophysics investigations and laboratory tests. The performance of each model was assessed through the accuracy, stability and gains. The results showed that while the BAYESIANMARKOV model achieved the highest overall accuracy (100%) in training phase, this model achieved the lowest accuracy (34.21%) in testing phases. Thus, this model had the worst stability. The QUEST had the second highest overall training accuracy (99.12%) and had the highest overall testing accuracy (94.74%). Thus, this model was somewhat stable and had an acceptable overall training and testing accuracy to predict the soil characteristics. The future studies can use the findings of this paper as a benchmark to classify the soil characteristics and select the best machine learning technique to perform this classification.


2020 ◽  
Vol 86 (9) ◽  
pp. 541-546
Author(s):  
Emre Başeski

Automatic image exploitation is a critical technology for quick content analysis of high-resolution remote sensing images. The presence of a heliport on an image usually implies an important facility, such as military facilities. Therefore, detection of heliports can reveal critical information about the content of an image. In this article, two learning-based algorithms are presented that make use of artificial neural networks to detect H-shaped, light-colored heliports. The first algorithm is based on shape analysis of the heliport candidate segments using classical artificial neural networks. The second algorithm uses deep-learning techniques. While deep learning can solve difficult problems successfully, classical-learning approaches can be tuned easily to obtain fast and reasonable results. Therefore, although the main objective of this article is heliport detection, it also compares a deep-learning based approach with a classical learning-based approach and discusses advantages and disadvantages of both techniques.


Sign in / Sign up

Export Citation Format

Share Document