scholarly journals Financial Analysis of Solar Water Heating Systems during the Depression: Case Study of Greece

2012 ◽  
Vol 23 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Jacob G. Fantidis ◽  
Dimitrios V. Bandekas ◽  
Constantinos Potolias ◽  
Nick Vordos ◽  
Kostas Karakoulidis

The use of solar thermal collectors is an economic alternative for water heating. In Greece more than 4 million m2 of collector area has been installed; however, the financial and economic crisis has dealt the solar thermal market a heavy blow. The aim of the paper is twofold: firstly, to present the new legislations and combined efforts taken by the government in order to give the solar thermal market a boost; secondly, to evaluate the effect of these efforts and calculate the new financial data from the citizens. For the promotion of solar water heaters, new legislations and concerted efforts are taken by the government. The effect of the new incentive program on the payback time of a typical glazed solar hot water system in Greece was investigated in this work. Long-term meteorological data from 47 stations are analyzed in order to evaluate the potential of solar water heater application at each site in Greece. The RETScreen software was used to predict the financial viability and the green house gas emissions reductions. The economical indicators showed that Tymbakion was the best site and Ioannina the worst. From the environmental point of view, it was found that on an average an approximate quantity of 1.47 ton of green house gases can be avoided entering into the local atmosphere each year.DOI: http://dx.doi.org/10.5755/j01.ee.23.1.1222

1997 ◽  
Vol 119 (2) ◽  
pp. 126-133 ◽  
Author(s):  
A. H. Fanney ◽  
B. P. Dougherty

A novel solar water heating system was patented in 1994. This system uses photovoltaic cells to generate electrical energy that is subsequently dissipated in multiple electric resistive heating elements. A microprocessor controller continually selects the appropriate heating elements such that the resistive load causes the photovoltaic array to operate at or near maximum power. Unlike other residential photovoltaic systems, the photovoltaic solar water heating system does not require an inverter to convert the direct current supplied by the photovoltaic array to an alternating current or a battery system for storage. It uses the direct current supplied by the photovoltaic array and the inherent storage capabilities of a residential water heater. A photovoltaic solar hot water system eliminates the components most often associated with the failures of solar thermal hot water systems. Although currently more expensive than a solar thermal hot water system, the continued decline of photovoltaic cell prices is likely to make this system competitive with solar thermal hot water systems within the next decade. This paper describes the system, discusses the advantages and disadvantages relative to solar thermal water heating systems, reviews the various control strategies which have been considered, and presents experimental results for two full-scale prototype systems.


Green ◽  
2011 ◽  
Vol 1 (2) ◽  
Author(s):  
Brian Norton

AbstractSolar water heating can be considered to be an established mature technology. The achievement of this status is the outcome of over a century of system development that culminated with a flourish of innovation in the last thirty years. Drivers for research and development have been achieving economic viability by devising systems that, for specific applications in particular climate contexts produced more hot water per unit cost. Reductions in both initial capital and installation costs have been achieved as well as in those associated with subsequent operation and maintenance. Research on solar water heating is discussed with the emphasis on overall systems though some key aspects of component development are also outlined. A comprehensive taxonomy is presented of the generic types of solar water heater that have emerged and their features, characteristics and performance are discussed.


1992 ◽  
Vol 114 (3) ◽  
pp. 188-193 ◽  
Author(s):  
H. A. Walker ◽  
J. H. Davidson

Entropy generated by operation of a two-phase self-pumping solar water heater under Solar Rating and Certification Corporation rating conditions is computed numerically in a methodology based on an exergy cascade. An order of magnitude analysis shows that entropy generation is dominated by heat transfer across temperature differences. Conversion of radiant solar energy incident on the collector to thermal energy within the collector accounts for 87.1 percent of total entropy generation. Thermal losses are responsible for 9.9 percent of total entropy generation, and heat transfer across the condenser accounts for 2.4 percent of the total entropy generation. Mixing in the tempering valve is responsible for 0.7 percent of the total entropy generation. Approximately one half of the entropy generated by thermal losses is attributable to the self-pumping process. The procedure to determine total entropy generation can be used in a parametric study to evaluate the performance of two-phase hot water heating systems relative to other solar water heating options.


2021 ◽  
Vol 19 ◽  
pp. 269-275
Author(s):  
Mateo Astudillo-Flores ◽  
◽  
Esteban Zalamea-Leon ◽  
Antonio Barragán-Escandón ◽  
M.R. Pelaez Samaniego ◽  
...  

The Andean Equatorial Region, due to its geographic location, shows great potential for using solar energy. Solar thermal energy is of interest in the residential sector in Ecuador and other Andean countries as a method to avoid fossilderived fuels consumption. However, previous learnings of the operation of solar water heating systems in other latitudes cannot be used in the conditions of Ecuador. Thus, the performance of the solar thermal energy systems in this geographic region deserves further study that consider typical high levels of cloudiness and fast climate oscillations. The objective of this work was to investigate the effect of the orientation of solar thermal plates on their energy efficiency and model the behaviour of these systems to predict their operation under Equatorial Andean climate conditions. For the F-Chart calibration different slopes angles were used, according to the typical roofs slopes in Cuenca, Ecuador. Results showed a monthly solar fraction, contributed by an evacuated tube collector is 26% higher than the flat plate collectors. The results also depict that, in the conditions of Cuenca, the greater solar water heating occurs when the collector is inclined 14° and facing towards the south. These findings can be used to predict the best operational conditions for using solar thermal energy collectors to produce hot water in the residential sector under equatorial highland altitude conditions.


2011 ◽  
Vol 224 ◽  
pp. 42-49
Author(s):  
Xiao Hui Du ◽  
Hai Shan Xia ◽  
Zhong Yi

During the integrated design of solar hot water system into high-rise residences, economy of solar hot water system directly effects its popularization and application. Combining with the concentrated solar water heating system on one high-rise residences, This paper tidies up the testing data on the June to October, and calculates solar insuring rate, auxiliary heat source heating rate and hot water cost at the different weather conditions, analyzes on the causes and provides some improvement advice, which will put forward the reference for architects to make the integrated design on the solar water heating system on high-rise residences.


2019 ◽  
Vol 1 (1) ◽  
pp. 17-23
Author(s):  
Samar Tan ◽  
Richard A.M Napitupulu

Hospitality is a relatively large energy user in the tourism sector. The application of renewable energy in this field will certainly save energy and contribute to reduce the effect of global warming. An interesting application to study is the use of solar energy for preparing hot water in hotel. This study is a literature study that explored research articles on solar water heater, especially used in hospitality, that have been published. Studies on solar energy have always increased over the past five years, 66.2% of which were in the field of solar thermal energy, where 11.2% of solar thermal energy researches were related to the use of solar energy for the process of heating water. For the research originating from Indonesia, the figures are 48.7% and 6.6% respectively. There is no research on the use of solar water heater in Indonesia. Research on tourism in Indonesia itself tends to decline. A simple example of simulation about solar water heating system using TRNSYS 18 simulation program was presented to motivate researchers in this field.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
M. Z. H. Khan ◽  
M. R. Al-Mamun ◽  
S. Sikdar ◽  
P. K. Halder ◽  
M. R. Hasan

This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experimental test. We reported the investigation of solar thermal conversion efficiency in different seasons which is 29.24% in summer, 14.75% in winter, and 15.53% in rainy season. This paper also discusses the DC heater for backup system and the current by using thermoelectric generator which are 3.20 V in summer, 2.120 V in winter, and 1.843 V in rainy season. This solar water heating system is mostly suited for its ease of operation and simple maintenance. It is expected that such novel solar thermal technology would further contribute to the development of the renewable energy (solar) driven heating/hot water service and therefore lead to significant environmental benefits.


2016 ◽  
Author(s):  
Gabriel Agila ◽  
Guillermo Soriano

This research develops a detailed model for a Water to Water Heat Pump Water Heater (HPWH), operating for heating and cooling simultaneously, using two water storage tanks as thermal deposits. The primary function of the system is to produce useful heat for domestic hot water services according to the thermal requirements for an average household (two adults and one child) in the city of Quito, Ecuador. The purpose of the project is to analyze the technical and economic feasibility of implementing thermal storage and heat pump technology to provide efficient thermal services and reduce energy consumption; as well as environmental impacts associated with conventional systems for residential water heating. An energy simulation using TRNSYS 17 is carried to evaluate model operation for one year. The purpose of the simulation is to assess and quantifies the performance, energy consumption and potential savings of integrating heat pump systems with thermal energy storage technology, as well as determines the main parameter affecting the efficiency of the system. Finally, a comparative analysis based on annual energy consumption for different ways to produce hot water is conducted. Five alternatives were examined: (1) electric storage water heater; (2) gas fired water heater; (3) solar water heater; (4) air source heat pump water heater; and (5) a heat pump water heater integrated with thermal storage.


2006 ◽  
Vol 129 (2) ◽  
pp. 226-234
Author(s):  
Robert Hendron ◽  
Mark Eastment ◽  
Ed Hancock ◽  
Greg Barker ◽  
Paul Reeves

Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, CO, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 35L∕s(75cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark (Hendron, R., 2005 NREL Report No. 37529, NREL, Golden, CO). The largest contributors to energy savings beyond McStain’s standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.


2013 ◽  
Vol 315 ◽  
pp. 783-787
Author(s):  
M.Yaakob Yuhazri ◽  
A.M. Kamarul ◽  
A.H. Rahimah ◽  
Sihombing Haeryip ◽  
S.H. Yahaya

This research is related to thermal efficient water heating system, specifically to improve the water heating system that exists nowadays. The goal of this research is to improve the current water heating system by using solar heat as the energy source to heat the water. The focus is to improve the thermal efficiency by adding different thermal boxes as the absorber bed. By implementing the black body and radiation concept, the air trapped in the box is heated. The trapped air then increases the collisions between the molecules and directly increases the temperature inside the box, higher than the outside environment. Based on a daytime experimental result revealed steel thermal box is better to be used for tropical weather like Malaysia.


Sign in / Sign up

Export Citation Format

Share Document