scholarly journals Early Age Strength Healing Effect of Cementitious Composite Incorporated Self-Healing Microcapsule

2021 ◽  
pp. X
Author(s):  
Xingang WANG ◽  
Xingjing WANG ◽  
Yuhao XIE ◽  
Wei XU

Received 27 February 2019; accepted 02 September 2019 This paper aims to explore early age strength healing effect of cementitious composite incorporated self-healing microcapsule and curing activity of self-healing microcapsule. Particle characteristic of the microcapsule and micromorphology of cement paste incorporated the microcapsule were characterized by SEM. Curing activity of the microcapsule was analyzed by macroscopic solidification test, DSC and TGA. The influence factors of early age strength healing ratio in cementitious composite incorporated self-healing microcapsule were studied. The results showed that epoxy resin microcapsule had favorable micromorphology. Epoxy resin microcapsule core material had good curing activity and possessed the ability to play the healing role in cementitious composite. Healing temperature and healing age had less impact on the healing effect of the microcapsule in cementitious composite. The microcapsule could be kept good shape in cement paste and combined with cement paste closely. The microcapsule also could rupture and had better dispersion in cement paste. The main fracture behavior of the microcapsule was based on small hole ruptured when cement paste did not occur macro damage. When pre-loading was 0.75 σmax, the particle size of microcapsules was range from 75 μm to 150 μm, proportion of epoxy curing agent was 20 % and proportion of the microcapsule was 6 %, early age strength healing ratio reached the highest of 24.1 %.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaoxing Yan ◽  
Yijuan Chang ◽  
Xingyu Qian

Urea formaldehyde resin-coated epoxy resin microcapsules were prepared by two-step in situ polymerization. The effects of five factors on the yield, coverage rate, repair rate, and morphology of the microcapsules were investigated by five factors and four levels of orthogonal test. These five factors were the mass ratio of the core to the wall material (Wcore:Wwall), the mass ratio of the emulsifier to the core material (Wemulsifier:Wcore), stirring rate, deposition time, and mass ratio of the emulsifier solution to the core material (Wemulsifier solution:Wcore). The ideal technological level of microcapsule synthesis was determined. According to the results of the range and variance of yield, coverage rate, and repair rate, the comprehensive properties of microcapsules became ideal. At this time, the Wcore:Wwall was 0.8 : 1, Wemulsifier:Wcore was 1 : 100, stirring rate was 600 r/min, deposition time was 32 h, and Wemulsifier solution:Wcore was 8 : 1. When the concentration of microcapsules in the epoxy resin was 10.0%, the self-repair rate was the best and the repair rate was 114.77%. This study is expected to provide a reference value for the preparation of a microcapsule self-healing technology and lay a foundation for the subsequent development of self-healing materials.


Author(s):  
Ian Bond ◽  
Tim Coope ◽  
Richard Trask ◽  
Greg McCombe ◽  
Duncan Wass ◽  
...  

A novel Lewis acid-catalysed self-healing system is investigated for implementation in epoxy-based fibre reinforced polymer (FRP) composite materials. The catalyst, scandium(III) triflate, is selected using a qualitative approach and subsequently embedded with pre-synthesised epoxy-solvent loaded microcapsules, into an epoxy resin. Healing is initiated when microcapsules are ruptured at the onset of crack propagation. The epoxy monomer healing agent contained within, actively undergoes ring-opening polymerisation (ROP) on contact with the locally placed catalyst, forming a new polymer to bridge the two fractured crack surfaces. Self-healing performance is quantified using tapered double cantilever beam (TDCB) epoxy resin test specimens and the effects of microcapsule loading, microcapsule content and healing temperature are all independently considered. As an initial proof of concept study, results show that a material recovery value of greater than 80% fracture strength is achieved for this novel Lewis acid-catalysed self-healing epoxy resin. The same self-healing agent system was subsequently demonstrated in a larger scale FRP component by incorporating both a microcapsule and hollow glass fibre (HGF) delivery system within an FRP laminate using a End-Notched Flexure (ENF) test configuration.


2011 ◽  
Vol 306-307 ◽  
pp. 658-662 ◽  
Author(s):  
Xiao Mei Tong ◽  
Min Zhang ◽  
Ming Zheng Yang

The curing process of self-healing microcapsules containing epoxy resin was studied with different shell material such as Poly (urea-formaldehyde), poly (melamine-urea-formaldehyde), Poly (urea-formaldehyde) modified by polyvinyl alcohol, and Poly (urea-formaldehyde) modified by phenol, respectively. The activation energy (ΔE) and the reaction order (n) have been obtained based on Kissinger method, Crane theory and Arrhenius equation. The results showed that: the curing process of epoxy resin as core material in self-healing microcapsules becomes more difficult compared with non-microencapsulated. The stability of shell material impacts on the cure process of core material. The resulting decomposition products of shell materials may participate in the curing reaction. So choosing suitable shell material is particularly important to self-healing microcapsules.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 757 ◽  
Author(s):  
Kim ◽  
Hong ◽  
Han ◽  
Kim

In this study, coating equipment for the effective underwater repair of submerged structures was developed. The tensile bond characteristics of selected epoxy resin coatings were investigated by coating the surface of a specimen using each of the four types of equipment. Using the experimental results, the tensile bond strength and the coating thickness were analyzed according to the type of equipment, coating, and curing time. The results show that the type of coating equipment used had the greatest effect on the measured bond strength and coating thickness of the selected coatings. However, the effect of coating type and curing time on the bond strength and the thickness was observed to be insignificant. Compared with the developed equipment, the surface treatment of the coating was observed to be more effective when using the pre-existing equipment, and thus the bond performance of the coating was improved compared to using the pre-existing equipment. Based on the experimental results, improvements and needs involving the equipment for further research were discussed.


Author(s):  
Dawei Sun ◽  
Ma Wenxu ◽  
Ma Jikun ◽  
Jianhua Yan ◽  
Mao Qianjin ◽  
...  

Author(s):  
Muhammad Zeeshan khan ◽  
Muhammad Hamza Younes ◽  
Aurang Zaib ◽  
Umar Farooq ◽  
Asim khan ◽  
...  

2021 ◽  
Author(s):  
Lenka Scheinherrová ◽  
Vojtěch Pommer ◽  
Eva Vejmelková ◽  
Robert Černý
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document