scholarly journals Bacterial Genetics of Large Mammalian DNA Viruses: Bacterial Artificial Chromosomes as a Prerequisite for Efficiently Studying Viral DNA Replication and Functions

Author(s):  
Felix Wussow ◽  
Tanja Spieckermann ◽  
Anne Brunnemann ◽  
Linda Huske ◽  
Tuna Toptan ◽  
...  
2015 ◽  
Vol 90 (3) ◽  
pp. 1657-1667 ◽  
Author(s):  
Tetsuro Komatsu ◽  
Kyosuke Nagata ◽  
Harald Wodrich

ABSTRACTPromyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes.IMPORTANCEThe immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and/or subsequent viral DNA replication. Here we performed a detailed analyses of the spatiotemporal distribution of incoming adenoviral genome complexes and found, in contrast to the expectation, that an adenoviral DNA replication factor, but not incoming genomes, targets PML-NBs. Thus, our findings may explain why adenoviral genomes could be observed at PML-NBs in earlier reports but argue against a generalized role for PML-NBs in targeting invading viral genomes.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Svenja Siebels ◽  
Manja Czech-Sioli ◽  
Michael Spohn ◽  
Claudia Schmidt ◽  
Juliane Theiss ◽  
...  

ABSTRACT Merkel cell polyomavirus (MCPyV) is the only polyomavirus known to be associated with tumorigenesis in humans. Similarly to other polyomaviruses, MCPyV expresses a large tumor antigen (LT-Ag) that, together with a small tumor antigen (sT-Ag), contributes to cellular transformation and that is of critical importance for the initiation of the viral DNA replication. Understanding the cellular protein network regulated by MCPyV early proteins will significantly contribute to our understanding of the natural MCPyV life cycle as well as of the mechanisms by which the virus contributes to cellular transformation. We here describe KRAB-associated protein 1 (Kap1), a chromatin remodeling factor involved in cotranscriptional regulation, as a novel protein interaction partner of MCPyV T antigens sT and LT. Kap1 knockout results in a significant increase in the level of viral DNA replication that is highly suggestive of Kap1 being an important host restriction factor during MCPyV infection. Differently from other DNA viruses, MCPyV gene expression is unaffected in the absence of Kap1 and Kap1 does not associate with the viral genome. Instead, we show that in primary normal human dermal fibroblast (nHDF) cells, MCPyV DNA replication, but not T antigen expression alone, induces ataxia telangiectasia mutated (ATM) kinase-dependent Kap1 S824 phosphorylation, a mechanism that typically facilitates repair of double-strand breaks in heterochromatin by arresting the cells in G2. We show that MCPyV-induced inhibition of cell proliferation is mainly conferred by residues within the origin binding domain and thereby by viral DNA replication. Our data suggest that phosphorylation of Kap1 and subsequent Kap1-dependent G2 arrest/senescence represent host defense mechanisms against MCPyV replication in nHDF cells. IMPORTANCE We here describe Kap1 as a restriction factor in MCPyV infection. We report a novel, indirect mechanism by which Kap1 affects MCPyV replication. In contrast with from other DNA viruses, Kap1 does not associate with the viral genome in MCPyV infection and has no impact on viral gene expression. In MCPyV-infected nHDF cells, Kap1 phosphorylation (pKap1 S824) accumulates because of genomic stress mainly induced by viral DNA replication. In contrast, ectopic expression of LT or LT MCPyV mutants, previously shown to be important for induction of genotoxic stress, does not result in a similar extent of pKap1 accumulation. We show that cells actively replicating MCPyV accumulate pKap1 (in a manner dependent on the presence of ATM) and display a senescence phenotype reflected by G2 arrest. These results are supported by transcriptome analyses showing that LT antigen, in a manner dependent on the presence of Kap1, induces expression of secreted factors, which is known as the senescence-associated secretory phenotype (SASP).


2008 ◽  
Vol 82 (13) ◽  
pp. 6409-6418 ◽  
Author(s):  
Toshihiro Nagamine ◽  
Yu Kawasaki ◽  
Atsushi Abe ◽  
Shogo Matsumoto

ABSTRACT Chromatin structure is strictly regulated during the cell cycle. DNA viruses occasionally disturb the spatial organization of the host cell chromatin due to formation of the viral DNA replication compartment. To examine chromatin behavior in baculovirus-infected cells, we constructed recombinant plasmids expressing fluorescent protein-tagged histone H4 molecules and visualized the intracellular localization of chromatin by their transient expression in live infected cells. Similar to other DNA viruses, the baculovirus Bombyx mori nucleopolyhedrovirus induced marginal relocation of chromatin within the nuclei of BmN cells, simultaneously with expansion of the viral DNA replication compartment, the virogenic stroma (VS). In the late stage of infection, however, the peristromal region (PR), another virus-induced subnuclear compartment, was also excluded from the chromatin-localizing area. Provided that late-gene products such as PR proteins (e.g., envelope proteins of the occlusion-derived virus) were expressed, blockage of viral DNA synthesis failed to inhibit chromatin relocation, despite abrogation of VS expansion. Instead, chromatin became marginalized concomitantly with PR expansion, suggesting that the PR contributes directly to chromatin replacement. In addition, chromatin was excluded from relatively large subnuclear structures that were induced in uninfected cells by cotransfection with four baculovirus genes, ie1, lef3, p143, and hr. Omission of any of the four genes, however, failed to result in formation of the large structures or chromatin exclusion. This correlation between compartmentalization and chromatin exclusion suggests the possibility that a chromatin-exclusive property of viral molecules, at least in part, supports nuclear compartmentalization of virus-infected cells.


2010 ◽  
Vol 34 (8) ◽  
pp. S60-S60
Author(s):  
Yuning Sun ◽  
Fang Li ◽  
Jianming Qiu ◽  
Xiaohong Lu

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 321
Author(s):  
Ashley N. Della Fera ◽  
Alix Warburton ◽  
Tami L. Coursey ◽  
Simran Khurana ◽  
Alison A. McBride

Persistent infection with oncogenic human papillomavirus (HPV) types is responsible for ~5% of human cancers. The HPV infectious cycle can sustain long-term infection in stratified epithelia because viral DNA is maintained as low copy number extrachromosomal plasmids in the dividing basal cells of a lesion, while progeny viral genomes are amplified to large numbers in differentiated superficial cells. The viral E1 and E2 proteins initiate viral DNA replication and maintain and partition viral genomes, in concert with the cellular replication machinery. Additionally, the E5, E6, and E7 proteins are required to evade host immune responses and to produce a cellular environment that supports viral DNA replication. An unfortunate consequence of the manipulation of cellular proliferation and differentiation is that cells become at high risk for carcinogenesis.


1983 ◽  
Vol 3 (3) ◽  
pp. 315-324 ◽  
Author(s):  
M P Quinlan ◽  
D M Knipe

Two herpes simplex virus proteins, the major capsid protein and the major DNA binding protein, are specifically localized to the nucleus of infected cells. We have found that the major proportion of these proteins is associated with the detergent-insoluble matrix or cytoskeletal framework of the infected cell from the time of their synthesis until they have matured to their final binding site in the cell nucleus. These results suggest that these two proteins may interact with or bind to the cellular cytoskeleton during or soon after their synthesis and throughout transport into the cell nucleus. In addition, the DNA binding protein remains associated with the nuclear skeleton at times when it is bound to viral DNA. Thus, viral DNA may also be attached to the nuclear framework. We have demonstrated that the DNA binding protein and the capsid protein exchange from the cytoplasmic framework to the nuclear framework, suggesting the direct movement of the proteins from one structure to the other. Inhibition of viral DNA replication enhanced the binding of the DNA binding protein to the cytoskeleton and increased the rate of exchange from the cytoplasmic framework to the nuclear framework, suggesting a functional relationship between these events. Inhibition of viral DNA replication resulted in decreased synthesis and transport of the capsid protein. We have been unable to detect any artificial binding of these proteins to the cytoskeleton when solubilized viral proteins were mixed with a cytoskeletal fraction or a cell monolayer. This suggested that the attachment of these proteins to the cytoskeleton represents the actual state of these proteins within the cell.


1983 ◽  
Vol 3 (3) ◽  
pp. 315-324
Author(s):  
M P Quinlan ◽  
D M Knipe

Two herpes simplex virus proteins, the major capsid protein and the major DNA binding protein, are specifically localized to the nucleus of infected cells. We have found that the major proportion of these proteins is associated with the detergent-insoluble matrix or cytoskeletal framework of the infected cell from the time of their synthesis until they have matured to their final binding site in the cell nucleus. These results suggest that these two proteins may interact with or bind to the cellular cytoskeleton during or soon after their synthesis and throughout transport into the cell nucleus. In addition, the DNA binding protein remains associated with the nuclear skeleton at times when it is bound to viral DNA. Thus, viral DNA may also be attached to the nuclear framework. We have demonstrated that the DNA binding protein and the capsid protein exchange from the cytoplasmic framework to the nuclear framework, suggesting the direct movement of the proteins from one structure to the other. Inhibition of viral DNA replication enhanced the binding of the DNA binding protein to the cytoskeleton and increased the rate of exchange from the cytoplasmic framework to the nuclear framework, suggesting a functional relationship between these events. Inhibition of viral DNA replication resulted in decreased synthesis and transport of the capsid protein. We have been unable to detect any artificial binding of these proteins to the cytoskeleton when solubilized viral proteins were mixed with a cytoskeletal fraction or a cell monolayer. This suggested that the attachment of these proteins to the cytoskeleton represents the actual state of these proteins within the cell.


Sign in / Sign up

Export Citation Format

Share Document