scholarly journals A Review: Practice and Theory in Line-Cell Conversion

Author(s):  
Ikou Kaku ◽  
Jun Gong ◽  
Jiafu Tang ◽  
Yong Yi
Keyword(s):  
Author(s):  
Francesco Napolitano ◽  
Trisevgeni Rapakoulia ◽  
Patrizia Annunziata ◽  
Akira Hasegawa ◽  
Melissa Cardon ◽  
...  

1998 ◽  
Vol 120 (2) ◽  
pp. 276-283 ◽  
Author(s):  
R. L. Bannister ◽  
R. A. Newby ◽  
W. C. Yang

Consideration of a hydrogen based economy is attractive because it allows energy to be transported and stored at high densities and then transformed into useful work in pollution-free turbine or fuel cell conversion systems. Through its New Energy and Industrial Technology Development Organization (NEDO) the Japanese government is sponsoring the World Energy Network (WE-NET) Program. The program is a 28-year global effort to define and implement technologies needed for a hydrogen-based energy system. A critical part of this effort is the development of a hydrogen-fueled combustion turbine system to efficiently convert the chemical energy stored in hydrogen to electricity when the hydrogen is combusted with pure oxygen. The full-scale demonstration will be a greenfield power plant located seaside. Hydrogen will be delivered to the site as a cryogenic liquid, and its cryogenic energy will be used to power an air liquefaction unit to produce pure oxygen. To meet the NEDO plant thermal cycle requirement of a minimum of 70.9 percent, low heating value (LHV), a variety of possible cycle configurations and working fluids have been investigated. This paper reports on the selection of the best cycle (a Rankine cycle), and the two levels of technology needed to support a near-term plant and a long-term plant. The combustion of pure hydrogen with pure hydrogen with pure oxygen results only in steam, thereby allowing for a direct-fired Rankine steam cycle. A near-term plant would require only development to support the design of an advanced high pressure steam turbine and an advanced intermediate pressure steam turbine.


Author(s):  
Hedong Li ◽  
Lei Zhang ◽  
Yuchen Chen ◽  
Zheng Wu ◽  
Zhuofan Lei ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Xinbo Qiao ◽  
Yixiao Zhang ◽  
Lisha Sun ◽  
Qingtian Ma ◽  
Jie Yang ◽  
...  

AbstractTumor metastasis remains the main cause of breast cancer-related deaths, especially the later breast cancer distant metastasis. This study assessed CD44−/CD24− tumor cells in 576 tissue specimens for associations with clinicopathological features and metastasis and then investigated the underlying molecular events. The data showed that level of CD44−/CD24− cells was associated with later postoperative distant tumor metastasis. Furthermore, CD44−/CD24− triple negative cells could spontaneously convert into CD44+/CD24− cancer stem cells (CSCs) with properties similar to CD44+/CD24− CSCs from parental MDA-MB-231 cells in terms of gene expression, tumor cell xenograft formation, and lung metastasis in vitro and in vivo. Single-cell RNA sequencing identified RHBDL2 as a regulator that enhanced spontaneous CD44+/CD24− CSC conversion, whereas knockdown of RHBDL2 expression inhibited YAP/NF-κB signaling and blocked spontaneous CD44−/CD24− cell conversion to CSCs. These data suggested that the level of CD44−/CD24− tumor cells could predict breast cancer prognosis, metastasis, and response to adjuvant therapy.


2021 ◽  
Author(s):  
Uylissa A. Rodriguez ◽  
Mairobys Socorro ◽  
Angela Criscimanna ◽  
Christina P. Martins ◽  
Nada Mohamed ◽  
...  

In contrast to the skin and the gut, where somatic stem cells and their niche are well characterized, a definitive pancreatic multipotent cell population in the adult pancreas has yet to be revealed. Of particular interest is whether such cells may be endogenous in diabetic patients, and if so, can they be used for therapeutic purposes. In the current study, we used two separate reporter lines to target Cre-recombinase expression to the Lgr5 or glucagon expressing cells in the pancreas. We provide evidence for the existence of a population of cells within and in the proximity of the ducts that transiently express the stem cell marker Lgr5 during late gestational stages. Careful timing of tamoxifen treatment in <i>Lgr5<sup>EGFP-IRES-CreERT2</sup></i>;R26<i><sup>Tomato</sup></i> mice allowed us to show that these <i>Lgr5</i>-expressing progenitor cells can differentiate into α-cells during pregnancy. Furthermore, we report on a spontaneous α-to β-cell lineage conversion specifically after parturition. The contribution of Lgr5-progeny to the β-cell compartment through an α-cell intermediate phase early on after pregnancy appears to be part of a novel mechanism that would counterbalance against excessive β-cell mass reduction during β-cell involution.


2018 ◽  
pp. 215-233
Author(s):  
Fulvio Gandolfi ◽  
Tiziana A. L. Brevini
Keyword(s):  

2020 ◽  
Author(s):  
Gong Chen ◽  
Wen Li ◽  
Zongqin Xiang ◽  
Liang Xu ◽  
Minhui Liu ◽  
...  

ABSTRACTRegenerating functional new neurons in the adult mammalian central nervous system (CNS) has been proven to be very challenging due to the inability of neurons to divide and repopulate themselves after neuronal loss. In contrast, glial cells in the CNS can divide and repopulate themselves under injury or disease conditions. Therefore, many groups around the world have been able to utilize internal glial cells to directly convert them into neurons for neural repair. We have previously demonstrated that ectopic expression of NeuroD1 in dividing glial cells can directly convert reactive glial cells into neurons. However, Wang et al. recently posted an article in bioRxiv challenging the entire field of in vivo glia-to-neuron conversion after using one single highly toxic dose of AAV (2×1013 gc/ml, 1 μl) in the mouse cortex, producing artifacts that are very difficult to interpret. We present data here that reducing AAV dosage to safe level will avoid artifacts caused by toxic dosage. We also demonstrate with Aldh1l1-CreERT2 and Ai14 reporter mice that lineage-traced astrocytes can be successfully converted into NeuN+ neurons after infected by AAV5 GFAP::NeuroD1. Retroviral expression of NeuroD1 further confirms our previous findings that dividing glial cells can be converted into neurons. Together, the incidence of Wang et al. sends an alarming signal to the entire in vivo reprogramming field that the dosage of viral vectors is a critical factor to consider when designing proper experiments. For AAV, we recommend a relatively safe dose of 1×1010 - 1×1012 gc/ml (~1 μl) in the rodent brain for cell conversion experiments addressing basic science questions. For therapeutic purpose under injury or diseased conditions, AAV dosage needs to be adjusted through a series of dose finding experiments. Moreover, we recommend that the AAV results are further verified with retroviruses that mainly express transgenes in dividing glial cells in order to draw solid conclusions.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1123 ◽  
Author(s):  
Guanggen Zeng ◽  
Xia Hao ◽  
Shengqiang Ren ◽  
Lianghuan Feng ◽  
Qionghua Wang

The application of thinner cadmium sulfide (CdS) window layer is a feasible approach to improve the performance of cadmium telluride (CdTe) thin film solar cells. However, the reduction of compactness and continuity of thinner CdS always deteriorates the device performance. In this work, transparent Al2O3 films with different thicknesses, deposited by using atomic layer deposition (ALD), were utilized as buffer layers between the front electrode transparent conductive oxide (TCO) and CdS layers to solve this problem, and then, thin-film solar cells with a structure of TCO/Al2O3/CdS/CdTe/BC/Ni were fabricated. The characteristics of the ALD-Al2O3 films were studied by UV–visible transmittance spectrum, Raman spectroscopy, and atomic force microscopy (AFM). The light and dark J–V performances of solar cells were also measured by specific instrumentations. The transmittance measurement conducted on the TCO/Al2O3 films verified that the transmittance of TCO/Al2O3 were comparable to that of single TCO layer, meaning that no extra absorption loss occurred when Al2O3 buffer layers were introduced into cells. Furthermore, due to the advantages of the ALD method, the ALD-Al2O3 buffer layers formed an extremely continuous and uniform coverage on the substrates to effectively fill and block the tiny leakage channels in CdS/CdTe polycrystalline films and improve the characteristics of the interface between TCO and CdS. However, as the thickness of alumina increased, the negative effects of cells were gradually exposed, especially the increase of the series resistance (Rs) and the more serious “roll-over” phenomenon. Finally, the cell conversion efficiency (η) of more than 13.0% accompanied by optimized uniformity performances was successfully achieved corresponding to the 10 nm thick ALD-Al2O3 thin film.


Sign in / Sign up

Export Citation Format

Share Document