scholarly journals Non Edible Oils: Raw Materials for Sustainable Biodiesel

Author(s):  
C.L. Bianchi ◽  
C. Pirola ◽  
D.C. Boffito ◽  
A. Di ◽  
G. Carvoli ◽  
...  
Keyword(s):  
2015 ◽  
Vol 9 (7) ◽  
pp. 61 ◽  
Author(s):  
Herry Santoso ◽  
Christ Michael ◽  
Hillman Wira ◽  
Maria Inggrid

Biodiesel can be produced from various oils and fats. Due to possibility of diversion of edible oils from feedstocks to raw materials for biodiesel production, which may lead to food crisis, it is preferable to choosenon-edible oils as raw material for biodiesel production. As a country rich in natural resources, Indonesia has avast amount and variety of non-edible fatty-oil production plants. However, non-edible oils usually have highfree fatty acid (FFA) contents. Oils with high FFA contents cannot be converted directly to biodiesel using aconventional alkaline catalyzed process due to saponification problem. To avoid this problem, the high FFAcontents in the oils must be reduced via esterification process using acid catalyst. The use of homogeneous acidcatalyst in this process can be very corrosive and not environmentally friendly while the use of commerciallyavailable heterogeneous acid catalyst can be very expensive. In this research, a heterogeneous acid catalystsuitable for biodiesel production will be derived from corn starch through pyrolysis followed by sulphonationprocesses. The purpose of this research is to study the effects of pyrolysis temperature and time to the aciddensity of the catalyst and the activity of the catalyst in the esterification of oleic acid using a 22 factorial designwith 3 center points experimental design. It is found that the catalyst obtained from pyrolysis at 400°C for 15hours has the optimum–HSO3 content of 5.9% which corresponds to the highest average conversion of theesterification of oleic acid of 97.45%.


Clean Energy ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 89-106
Author(s):  
Baskar Thangaraj ◽  
Pravin Raj Solomon

Abstract Non-edible oils obtained from chosen non-conventional woody plants are considered as potential raw materials for biodiesel production. These plants mostly grow in wastelands. Structural characteristics of these oils as raw material are very much in tune with the properties of biodiesel such as long-chain hydrocarbon, having an adequate level of unsaturation with branched chain. Four primary methods are being followed to make biodiesel from vegetable oil. They are direct use through blending, microemulsion, thermal cracking (pyrolysis) and transesterification. Non-edible oil would eliminate the issue of food vs fuel. The biodiesel manufactured from oils of woody plants may partially reduce the demand for liquid-fuel energy and addresses the environmental consequences of using fossil fuels. Oil from a total of 17 species of woody plants (Angiosperms) belonging to 14 families are considered in this paper. The habit, habitat and geographical distribution of each species are also presented. The physico-chemical properties of their oil, with special reference to the fatty-acid profile that ultimately decides the characteristics of the biodiesel prepared from them, are reviewed.


Author(s):  
Francisc Vasile DULF ◽  
Constantin BELE ◽  
Mihaela UNGUREŞAN ◽  
Raluca PARLOG ◽  
Carmen SOCACIU

In food production, the quality assessment of raw materials and final products is a fundamental parameter for maintaining high quality standards. Pumpkin seed oil is rather expensive compared to other vegetable oils. Therefore, it is often adulterated by the addition of cheaper oils. In contrast to other edible oils, the content of 5-sterols is very low, while 7-sterols are dominating. The aim of this study was to develop a rapid and convenient chromatographic method for authenticity control of pumpkin seed oil using the total sterol profile determined by gas-chromatography (GC) with flame ionization detector (FID). Two pure vegetable oils, pumpkin seed and sunflower oil, processed by minimal technologies (cold pressing) in Romania and an adulterated pumpkin seed oil with 30% of sunflower oil were used as sample matrices in the method development. The determination of 5-sterols, especially -sitosterol has proven to be a good possibility to detect admixture of cheap vegetable oils.


1978 ◽  
Vol 27 (10) ◽  
pp. 696-703
Author(s):  
Morio HAMASHIMA
Keyword(s):  

Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Chung-kook Lee ◽  
Yolande Berta ◽  
Robert F. Speyer

Barium hexaferrite (BaFe12O19) is a promising candidate for high density magnetic recording media due to its superior magnetic properties. For particulate recording media, nano-sized single crystalline powders with a narrow size distribution are a primary application requirement. The glass-crystallization method is preferred because of the controllability of crystallization kinetics, hence, particle size and size distribution. A disadvantage of this method is the need to melt raw materials at high temperatures with non-reactive crucibles, e.g. platinum. However, in this work, we have shown that crystal growth of barium hexaferrite occurred during low temperature heat treatment of raw batches.


Sign in / Sign up

Export Citation Format

Share Document