scholarly journals The Inhibitory Effect of Natural Stilbenes and Their Analogues on Catalytic Activity of Cytochromes P450 Family 1 in Comparison with Other Phenols - Structure and Activity Relationship

Author(s):  
Renata Mikstacka ◽  
Zbigniew Dutkiewicz ◽  
Stanisaw Sobiak ◽  
Wanda Baer-Dubowsk
2021 ◽  
Vol 22 (9) ◽  
pp. 4512
Author(s):  
Michał Marcinkowski ◽  
Tomaš Pilžys ◽  
Damian Garbicz ◽  
Jan Piwowarski ◽  
Damian Mielecki ◽  
...  

The FTO protein is involved in a wide range of physiological processes, including adipogenesis and osteogenesis. This two-domain protein belongs to the AlkB family of 2-oxoglutarate (2-OG)- and Fe(II)-dependent dioxygenases, displaying N6-methyladenosine (N6-meA) demethylase activity. The aim of the study was to characterize the relationships between the structure and activity of FTO. The effect of cofactors (Fe2+/Mn2+ and 2-OG), Ca2+ that do not bind at the catalytic site, and protein concentration on FTO properties expressed in either E. coli (ECFTO) or baculovirus (BESFTO) system were determined using biophysical methods (DSF, MST, SAXS) and biochemical techniques (size-exclusion chromatography, enzymatic assay). We found that BESFTO carries three phosphoserines (S184, S256, S260), while there were no such modifications in ECFTO. The S256D mutation mimicking the S256 phosphorylation moderately decreased FTO catalytic activity. In the presence of Ca2+, a slight stabilization of the FTO structure was observed, accompanied by a decrease in catalytic activity. Size exclusion chromatography and MST data confirmed the ability of FTO from both expression systems to form homodimers. The MST-determined dissociation constant of the FTO homodimer was consistent with their in vivo formation in human cells. Finally, a low-resolution structure of the FTO homodimer was built based on SAXS data.


2021 ◽  
pp. 152121
Author(s):  
Daniil A. Eurov ◽  
Tatiana N. Rostovshchikova ◽  
Marina I. Shilina ◽  
Demid A. Kirilenko ◽  
Maria V. Tomkovich ◽  
...  

2021 ◽  
Author(s):  
Shaoxuan Yang ◽  
Yihuan Yu ◽  
Xinjin Gao ◽  
Zhengping Zhang ◽  
Feng Wang

This review provides a timely and comprehensive overview of the recent progresses in the synthesis and application of phthalocyanine-based heterogeneous electrocatalysts, as well as the structure/composition–catalytic activity relationship, and future prospects.


1996 ◽  
Vol 317 (1) ◽  
pp. 291-295 ◽  
Author(s):  
Igor P. UDOVICHENKO ◽  
Jess CUNNICK ◽  
Karen GONZALEZ ◽  
Alexander YAKHNIN ◽  
Dolores J. TAKEMOTO

The inhibitory subunit (PDEγ) of the cGMP phosphodiesterase (PDEαβγ2) in rod outer segments (ROS) realizes its regulatory role in phototransduction by inhibition of PDEαβ catalytic activity. The photoreceptor G-protein, transducin, serves as a transducer from the receptor (rhodopsin) to the effector (PDE) and eliminates the inhibitory effect of PDEγ by direct interaction with PDEγ. Our previous study [Udovichenko, Cunnick, Gonzalez and Takemoto (1994) J. Biol. Chem. 269, 9850–9856] has shown that PDEγ is a substrate for protein kinase C (PKC) from ROS and that phosphorylation by PKC increases the ability of PDEγ to inhibit PDEαβ catalytic activity. Here we report that transducin is less effective in activation of PDEαβ(γp)2 (a complex of PDEαβ with phosphorylated PDEγ, PDEγp) than PDEαβγ2. PDEγp also increases the rate constant of GTP hydrolysis of transducin (from 0.16 s-1 for non-phosphorylated PDEγ to 0.21 s-1 for PDEγp). These data suggest that phosphorylation of the inhibitory subunit of PDE by PKC may regulate the visual transduction cascade by decreasing the photoresponse.


2016 ◽  
Vol 49 (3) ◽  
pp. 796-806 ◽  
Author(s):  
Mark P. F. Pepels ◽  
Inge Hermsen ◽  
Geert J. Noordzij ◽  
Rob Duchateau

Sign in / Sign up

Export Citation Format

Share Document