scholarly journals Point Mutation in Surveillance of Drug-Resistant Malaria

10.5772/35185 ◽  
2012 ◽  
Author(s):  
Sungano Mharakurwa

mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammad S. I. Sajib ◽  
Arif M. Tanmoy ◽  
Yogesh Hooda ◽  
Hafizur Rahman ◽  
Jason R. Andrews ◽  
...  

ABSTRACT The rising prevalence of antimicrobial resistance in Salmonella enterica serovars Typhi and Paratyphi A, causative agents of typhoid and paratyphoid, have led to fears of untreatable infections. Of specific concern is the emerging resistance against azithromycin, the only remaining oral drug to treat extensively drug resistant (XDR) typhoid. Since the first report of azithromycin resistance from Bangladesh in 2019, cases have been reported from Nepal, India, and Pakistan. The genetic basis of this resistance is a single point mutation in the efflux pump AcrB (R717Q/L). Here, we report 38 additional cases of azithromycin-resistant (AzmR) Salmonella Typhi and Paratyphi A isolated in Bangladesh between 2016 and 2018. Using genomic analysis of 56 AzmR isolates from South Asia with AcrB-R717Q/L, we confirm that this mutation has spontaneously emerged in different Salmonella Typhi and Paratyphi A genotypes. The largest cluster of AzmR Typhi belonged to genotype 4.3.1.1; Bayesian analysis predicts the mutation to have emerged sometime in 2010. A travel-related Typhi isolate with AcrB-R717Q belonging to 4.3.1.1 was isolated in the United Kingdom, increasing fears of global spread. For real-time detection of AcrB-R717Q/L, we developed an extraction-free, rapid, and low-cost mismatch amplification mutation assay (MAMA). Validation of MAMA using 113 AzmR and non-AzmR isolates yielded >98% specificity and sensitivity versus phenotypic and whole-genome sequencing assays currently used for azithromycin resistance detection. With increasing azithromycin use, AcrB-R717Q/L is likely to be acquired by XDR strains. The proposed tool for active detection and surveillance of this mutation may detect pan-oral drug resistance early, giving us a window to intervene. IMPORTANCE In the early 1900s, with mortality of ∼30%, typhoid and paratyphoid ravaged parts of the world; with improved water, sanitation, and hygiene in resource-rich countries and the advent of antimicrobials, mortality dwindled to <1%. Today, the burden rests disproportionately on South Asia, where the primary means for combatting the disease is antimicrobials. However, prevalence of antimicrobial resistance is rising and, in 2016, an extensively drug resistant Typhi strain triggered an ongoing outbreak in Pakistan, leaving only one oral drug, azithromycin, to treat it. Since the description of emergence of azithromycin resistance, conferred by a point mutation in acrB (AcrB-R717Q/L) in 2019, there have been increasing numbers of reports. Using genomics and Bayesian analysis, we illustrate that this mutation emerged in approximately 2010 and has spontaneously arisen multiple times. Emergence of pan-oral drug resistant Salmonella Typhi is imminent. We developed a low-cost, rapid PCR tool to facilitate real-time detection and prevention policies.



2001 ◽  
Vol 67 (4) ◽  
pp. 1885-1892 ◽  
Author(s):  
Haifeng Hu ◽  
Kozo Ochi

ABSTRACT We developed a novel approach for improving the production of antibiotic from Streptomyces coelicolor A3(2) by inducing combined drug-resistant mutations. Mutants with enhanced (1.6- to 3-fold-higher) actinorhodin production were detected at a high frequency (5 to 10%) among isolates resistant to streptomycin (Strr), gentamicin (Genr), or rifampin (Rifr), which developed spontaneously on agar plates which contained one of the three drugs. Construction of double mutants (str gen and str rif) by introducing gentamicin or rifampin resistance into anstr mutant resulted in further increased (1.7- to 2.5-fold-higher) actinorhodin productivity. Likewise, triple mutants (str gen rif) thus constructed were found to have an even greater ability for producing the antibiotic, eventually generating a mutant able to produce 48 times more actinorhodin than the wild-type strain. Analysis ofstr mutants revealed that a point mutation occurred within the rpsL gene, which encodes the ribosomal protein S12. rif mutants were found to have a point mutation in the rpoB gene, which encodes the β-subunit of RNA polymerase. Mutation points ingen mutants still remain unknown. These single, double, and triple mutants displayed in hierarchical order a remarkable increase in the production of ActII-ORF4, a pathway-specific regulatory protein, as determined by Western blotting analysis. This reflects the same hierarchical order observed for the increase in actinorhodin production. The superior ability of the triple mutants was demonstrated by physiological analyses under various cultural conditions. We conclude that by inducing combined drug-resistant mutations we can continuously increase the production of antibiotic in a stepwise manner. This new breeding approach could be especially effective for initially improving the production of antibiotics from wild-type strains.



Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1423-1423 ◽  
Author(s):  
Thai Hoa Tran ◽  
Jonathan Van Nguyen ◽  
Catherine C. Smith ◽  
Kathryn G. Roberts ◽  
Charles G. Mullighan ◽  
...  

Abstract Background: Advances in cancer genomics have recently identified a particular group of patients who display a gene expression profile (GEP) similar to that of Philadelphia-chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) patients in approximately 15% of children and over 25% of young adults with B-ALL; thus known as Ph-like ALL. The latter has a worse prognosis compared to those without the Ph-like GEP with conventional chemotherapy. Recent studies have unraveled the genomic landscape of Ph-like ALL which is characterized by genetic alterations activating kinase signaling pathways predicted to respond to tyrosine kinase inhibitors (TKIs). In light of the remarkable outcomes of Ph+ALL patients through incorporation of TKI, the Children's Oncology Group (COG) ALL Committee is actively working to incorporate dasatinib for Ph-like ALL patients harboring ABL-class kinase fusions (ABL1, ABL2, PDGFRB, CSF1R) and eventually, ruxolitinib for those with lesions that are predicted to respond to JAK inhibition. While it is hoped that many of these patients will be cured with the addition of relevant TKIs to chemotherapy, we hypothesize that a proportion of patients will develop resistance to TKI, similar to adults with chronic myeloid leukemia who have been treated with long-term TKI. Hence, investigating the underlying mechanisms governing therapy resistance in Ph-like ALL becomes critical for proactively developing novel therapeutic strategies in the relapsed setting. Objectives: To identify the full spectrum of mutations conferring resistance to clinically-active TKIs in Ph-like ALL and to characterize their relative biochemical resistance to different TKIs. Methods: We first focused on the EBF1-PDGFRB rearrangement since this is the most common recurrent kinase-activating fusion genes in pediatric Ph-like ALL. We used a previously validated in-vitro saturation mutagenesis screen to predict the full spectrum of EBF1-PDGFRB drug-resistant mutations. In brief, EBF1-PDGFRB plasmid was propagated into DNA-repair-deficient E. Coli strain XL-1 Red to generate a library of random mutants. Mutagenized EBF1-PDGFRB plasmid was transfected into 293T cells. Viral supernatants were collected and used to infect Ba/F3 cells. Transduced Ba/F3 cells were plated in 1.2% Bacto-agar and exposed to different TKIs (imatinib, dasatinib) at various concentrations. Genomic DNA from IL-3 independent and TKI-resistant colonies was isolated. The PDGFRB kinase domain was amplified and bidirectional sequencing was performed. Results: Our in-vitro screens showed that the vast majority of drug-resistant clones harbor a kinase domain (KD) point mutation. The predominant KD point mutation conferring resistance to imatinib (94%; 168/178 colonies) or dasatinib (81%; 338/416 colonies) was T681I, which is analogous to BCR-ABL1 T315I gatekeeper mutation. N666S was the second most common KD mutation (6%; 18/321 colonies). The full panel of KD mutations recovered is shown in Table 1. Ba/F3 cells harboring mutant EBF1-PDGFRB T681I was 100 times more resistant to dasatinib compared to wild-type and could be rescued by ponatinib, as predicted (Figure 1). Conclusion: Our screens suggest that KD point mutations may represent the primary mechanism of acquired TKI resistance in EBF1-PDGFRB Ph-like ALL. T681I was the most common KD point mutation in EBF1-PDGFRB upon exposure to imatinib or dasatinib. Future efforts should focus on targeting the T681I gatekeeper mutation with ponatinib or alternative agents for relapsed Ph-like ALL patients harboring these mutations. Figure 1. Cell proliferation profile of Ba/F3 cells harboring EBF1-PDGFRB wild-type and mutant T681I treated with dasatinib or ponatinib. Figure 1. Cell proliferation profile of Ba/F3 cells harboring EBF1-PDGFRB wild-type and mutant T681I treated with dasatinib or ponatinib. Figure 2. Figure 2. Disclosures Smith: Astellas: Research Funding; Plexxikon: Research Funding. Mullighan:Cancer Science Institute: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Speakers Bureau; Incyte: Consultancy, Honoraria; Loxo Oncology: Research Funding. Shah:Bristol-Myers Squibb: Research Funding; Pfizer: Research Funding; Plexxikon Inc.: Research Funding.



Nature ◽  
2019 ◽  
Author(s):  
Emiliano Rodríguez Mega
Keyword(s):  






2005 ◽  
Vol 35 (22) ◽  
pp. 24
Author(s):  
Sharon Worcester
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document