scholarly journals Biodegradation and Leaching of Surfactants During Surfactant-Amended Bioremediation of Oil-Polluted Soil

Author(s):  
Aare Selberg ◽  
Katlin Juuram ◽  
Jana Budashova ◽  
Toomas Tenno
Keyword(s):  
2019 ◽  
Vol 18 (6) ◽  
pp. 1297-1309
Author(s):  
Antonis A. Zorpas ◽  
Maria K. Doula ◽  
Vassilis J. Inglezakis ◽  
Jose Pedreno Navvaro ◽  
Dimitrios J. Bilalis

2018 ◽  
Vol 69 (7) ◽  
pp. 1695-1698
Author(s):  
Marin Rusanescu ◽  
Carmen Otilia Rusanescu ◽  
Gheorghe Voicu ◽  
Mihaela Begea

A calcium bentonite from Orasu Nou deposit (Satu Mare Romania) was used as raw material. We have conducted laboratory experiments to determine the influence of bentonite on the degree of heavy metal retention. It has been observed that the rate of retention increases as the heavy metal concentration decreases. Experimental studies have been carried out on metal retention ( Zn) in bentonite. In this paper, we realized laboratory experiments for determining the influence of metal (Zn) on the growth and development of two types of plants (Pelargonium domesticum and Kalanchoe) and the effect of bentonite on the absorption of pollutants. These flowers were planted in unpolluted soil, in heavy metal polluted soil and in heavy metal polluted soil to which bentonite was added to observe the positive effect of bentonite. It has been noticed that the flowers planted in unpolluted soil and polluted with heavy metals to which bentonite has been added, the flowers have flourished, the leaves are still green and the plants whose soils have been polluted with heavy metals began to dry after 6 days, three weeks have yellowish leaves and flowers have dried. Experiments have demonstrated the essential role of bentonite for the removal of heavy metals polluted soil.


2020 ◽  
Vol 51 (6) ◽  
pp. 528-540
Author(s):  
I. V. Lyanguzova ◽  
M. S. Bondarenko ◽  
A. I. Belyaeva ◽  
M. N. Kataeva ◽  
V. Sh. Barkan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Azizul Moqsud

AbstractIn this research, bioremediation of tsunami-affected polluted soil has been conducted by using collective microorganisms and recycled waste glass. The Tohoku earthquake, which was a mega earthquake in Japan triggered a huge tsunami on March 11th, 2011 that caused immeasurable damage to the geo-environmental conditions by polluting the soil with heavy metals and excessive salt content. Traditional methods to clean this polluted soil was not possible due to the excess cost and efforts. Laboratory experiments were conducted to examine the capability of bioremediation of saline soil by using recycled waste glass. Different collective microorganisms which were incubated inside the laboratory were used. The electrical conductivity (EC) was measured at different specified depths. It was noticed that the electrical conductivity decreased with the assist of the microbial metabolisms significantly. Collective microorganisms (CM2) were the highly capable to reduce salinity (up to 75%) while using recycled waste glass as their habitat.


2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Fatemeh Mohebzadeh ◽  
Babak Motesharezadeh ◽  
Mohammad Jafari ◽  
Salman Zare ◽  
Maryam Saffari Aman

Author(s):  
Erica Pensini ◽  
Thamara Laredo ◽  
Laura Earnden ◽  
Alejandro G. Marangoni ◽  
Saeed Mirzaee Ghazani

2020 ◽  
Vol 12 (2) ◽  
pp. 387-398
Author(s):  
Sylvia O. OGOANAH ◽  
Uzoamaka N. NGWOKE ◽  
Edokpolor O. OHANMU ◽  
Pascal C. OKOYE ◽  
Beckley IKHAJIAGBE

The study investigated the enhancement of soil quality of an oil-polluted ultisol using livestock wastes. Top soil (0 - 10 cm) was obtained as a pooled sample and polluted with spent lubricating oil at 10% w/w. The soil was subsequently amended with sun-dried goat (GT), rabbit (RB), and poultry (PG) dung at 10% w/w on dry weight basis both in singles, double-mixed, and triple-mixed combinations. Twelve weeks after treatment application, results showed that there was a 93.9% decrease (p<0.05) in bacterial colony count in the oil-polluted soil compared to the control. Penicillium notatum and Aspergillus niger as well as Bacillus sp. and Proteus sp. were the prominent fungal and bacterial species identified respectively. The most abundant plant in the soil seed bank was Panicum maximum with 10.4% abundance and this showed possible involvement of the plant in remediation of oil-pollution. The total hydrocarbon content of the oil-polluted soil was 9984.0 mg/kg, compared to 3170.6 mg/kg when amended with RB+GT, implying 76.77% remediation efficiency. Among several trials employed in this study, the combination of rabbit and goat wastes proved to be more effective in reducing the total hydrocarbon content of oil-polluted soil and therefore, is recommended as a potential candidate for application in the bioremediation of such soil.


2019 ◽  
Vol 13 (10) ◽  
pp. 402-409
Author(s):  
Olusanya Emmanuel Oludele ◽  
Damilola Tope Ogundele ◽  
Kayode Odeniyi ◽  
Olayinka Shoyode

1995 ◽  
Vol 18 (3) ◽  
pp. 191-203 ◽  
Author(s):  
Eva M. Top ◽  
Helene Rore ◽  
Jean-Marc Collard ◽  
Veerle Gellens ◽  
Galina Slobodkina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document