scholarly journals Therapy for Cystic Fibrosis Caused by Nonsense Mutations

Author(s):  
Roberto Gambari ◽  
Giulia Breveglieri ◽  
Francesca Salvatori ◽  
Alessia Finotti ◽  
Monica Borgatti

2019 ◽  
Author(s):  
Laura J. Sherrard ◽  
Bryan A. Wee ◽  
Christine Duplancic ◽  
Kay A. Ramsay ◽  
Keyur A. Dave ◽  
...  

ABSTRACTDefective OprD porins contribute to carbapenem resistance and may be important in Pseudomonas aeruginosa adaptation to cystic fibrosis airways. It is unclear whether oprD mutations are fixed in populations of shared strains that are transmitted between patients or whether novel variants arise during infection. We investigated oprD sequences and antimicrobial resistance of two common Australian shared strains, constructed P. aeruginosa mutants with the most common oprD allelic variants and compared characteristics between patients with or without evidence of infection with strains harbouring these variants. Our data show that three independently acquired nonsense mutations arising from a 1-base pair substitution are fixed in strain sub-lineages. These nonsense mutations are likely to contribute to reduced carbapenem susceptibility in the sub-lineages without compromising in vitro fitness. Not only was lung function worse among patients infected with strains harbouring the nonsense mutations than those without, but they also had an increased hazard rate of lung transplantation/death. Our findings further highlight that understanding adaptive changes may help to distinguish patients with greater adverse outcomes despite infection with the same strain.



1990 ◽  
Vol 323 (24) ◽  
pp. 1685-1689 ◽  
Author(s):  
Garry R. Cutting ◽  
Laura M. Kasch ◽  
Beryl J. Rosenstein ◽  
Lap-Chee Tsui ◽  
Haig H. Kazazian ◽  
...  




2021 ◽  
Author(s):  
Wooree Ko ◽  
Joseph J. Porter ◽  
Matthew T. Sipple ◽  
Katherine M. Edwards ◽  
John D. Lueck

Nonsense mutations or premature termination codons (PTCs) comprise ~11% of all genetic lesions, which result in over 7,000 distinct genetic diseases. Due to their outsized impact on human health, considerable effort has been made to find therapies for nonsense-associated diseases. Suppressor tRNAs have long been identified as a possible therapeutic for nonsense-associated diseases, however their ability to inhibit nonsense-mediated mRNA decay (NMD) and support significant protein translation from endogenous transcripts has not been determined in mammalian cells. Here we investigated the ability of anticodon edited (ACE)-tRNAs to suppress cystic fibrosis (CF) causing PTCs in the cystic fibrosis transmembrane regulator (CFTR) gene in gene-edited immortalized human bronchial epithelial (16HBEge) cells. Delivery of ACE-tRNAs to 16HBEge cells harboring three common CF mutations G542X-, R1162X- and W1282X-CFTR PTCs significantly inhibited NMD and rescued endogenous mRNA expression. Furthermore, delivery of our highly active leucine encoding ACE-tRNA resulted in rescue of W1282X-CFTR channel function to levels that significantly exceed the necessary CFTR channel function for therapeutic relevance. This study establishes the ACE-tRNA approach as a potential stand-alone therapeutic for nonsense-associated diseases due to its ability to rescue both mRNA and full-length protein expression from PTC containing endogenous genes.



2020 ◽  
Vol 55 (7) ◽  
pp. 1838-1842 ◽  
Author(s):  
Jacelyn E. Peabody Lever ◽  
Venkateshwar Mutyam ◽  
Heather Y. Hathorne ◽  
Ning Peng ◽  
Jyoti Sharma ◽  
...  


2021 ◽  
Author(s):  
Edward Sanderlin ◽  
Melissa Keenan ◽  
Martin Mense ◽  
Alexey Revenko ◽  
Brett Monia ◽  
...  

Abstract Cystic fibrosis is caused by loss of function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene resulting in severe lung disease. Nearly 10% of cystic fibrosis patients have at least one CFTR allele with a nonsense mutation that generates a nonsense codon in the mRNA. Nonsense mutations can result in significant reduction of gene expression partially due to rapid mRNA degradation through the nonsense-mediated decay (NMD) pathway. It has not been thoroughly investigated which branch of the NMD pathway governs the decay of CFTR mRNAs containing nonsense codons. Here we utilized antisense oligonucleotides targeting NMD factors to evaluate the regulation of nonsense codon-containing CFTR mRNAs by the NMD pathway. Interestingly, we found that CFTR mRNAs with G542X, R1162X, and W1282X nonsense codons require UPF2, UPF3, and exon junction complex proteins for NMD, whereas CFTR mRNAs with the Y122X nonsense codon do not. Furthermore, we demonstrated that all evaluated CFTR mRNAs harboring nonsense codons were degraded by the SMG6-mediated endonucleolytic pathway rather than the SMG5/SMG7-mediated exonucleolytic pathway. Finally, we found that stabilization of CFTR mRNAs by NMD inhibition alone improved functional W1282X protein production, and improved the efficiency of aminoglycoside translational readthrough of CFTR-Y122X, -G542X, and -R1162X mRNAs.





mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
John B. Feltner ◽  
Daniel J. Wolter ◽  
Christopher E. Pope ◽  
Marie-Christine Groleau ◽  
Nicole E. Smalley ◽  
...  

ABSTRACT Chronic Pseudomonas aeruginosa infections cause significant morbidity in patients with cystic fibrosis (CF). Over years to decades, P. aeruginosa adapts genetically as it establishes chronic lung infections. Nonsynonymous mutations in lasR , the quorum-sensing (QS) master regulator, are common in CF. In laboratory strains of P. aeruginosa , LasR activates transcription of dozens of genes, including that for another QS regulator, RhlR. Despite the frequency with which lasR coding variants have been reported to occur in P. aeruginosa CF isolates, little is known about their consequences for QS. We sequenced lasR from 2,583 P. aeruginosa CF isolates. The lasR sequences of 580 isolates (22%) coded for polypeptides that differed from the conserved LasR polypeptides of well-studied laboratory strains. This collection included 173 unique lasR coding variants, 116 of which were either missense or nonsense mutations. We studied 31 of these variants. About one-sixth of the variant LasR proteins were functional, including 3 with nonsense mutations, and in some LasR-null isolates, genes that are LasR dependent in laboratory strains were nonetheless expressed. Furthermore, about half of the LasR-null isolates retained RhlR activity. Therefore, in some CF isolates the QS hierarchy is altered such that RhlR quorum sensing is independent of LasR regulation. Our analysis challenges the view that QS-silent P. aeruginosa is selected during the course of a chronic CF lung infection. Rather, some lasR sequence variants retain functionality, and many employ an alternate QS strategy involving RhlR. IMPORTANCE Chronic Pseudomonas aeruginosa infections, such as those in patients with the genetic disease cystic fibrosis, are notable in that mutants with defects in the quorum-sensing transcription factor LasR frequently arise. In laboratory strains of P. aeruginosa , quorum sensing activates transcription of dozens of genes, many of which encode virulence factors, such as secreted proteases and hydrogen cyanide synthases. In well-studied laboratory strains, LasR-null mutants have a quorum-sensing-deficient phenotype. Therefore, the presence of LasR variants in chronic infections has been interpreted to indicate that quorum-sensing-regulated products are not important for those infections. We report that some P. aeruginosa LasR variant clinical isolates are not LasR-null mutants, and others have uncoupled a second quorum-sensing system, the RhlR system, from LasR regulation. In these uncoupled isolates, RhlR independently activates at least some quorum-sensing-dependent genes. Our findings suggest that quorum sensing plays a role in chronic P. aeruginosa infections, despite the emergence of LasR coding variants.





Sign in / Sign up

Export Citation Format

Share Document