scholarly journals LasR Variant Cystic Fibrosis Isolates Reveal an Adaptable Quorum-Sensing Hierarchy in Pseudomonas aeruginosa

mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
John B. Feltner ◽  
Daniel J. Wolter ◽  
Christopher E. Pope ◽  
Marie-Christine Groleau ◽  
Nicole E. Smalley ◽  
...  

ABSTRACT Chronic Pseudomonas aeruginosa infections cause significant morbidity in patients with cystic fibrosis (CF). Over years to decades, P. aeruginosa adapts genetically as it establishes chronic lung infections. Nonsynonymous mutations in lasR , the quorum-sensing (QS) master regulator, are common in CF. In laboratory strains of P. aeruginosa , LasR activates transcription of dozens of genes, including that for another QS regulator, RhlR. Despite the frequency with which lasR coding variants have been reported to occur in P. aeruginosa CF isolates, little is known about their consequences for QS. We sequenced lasR from 2,583 P. aeruginosa CF isolates. The lasR sequences of 580 isolates (22%) coded for polypeptides that differed from the conserved LasR polypeptides of well-studied laboratory strains. This collection included 173 unique lasR coding variants, 116 of which were either missense or nonsense mutations. We studied 31 of these variants. About one-sixth of the variant LasR proteins were functional, including 3 with nonsense mutations, and in some LasR-null isolates, genes that are LasR dependent in laboratory strains were nonetheless expressed. Furthermore, about half of the LasR-null isolates retained RhlR activity. Therefore, in some CF isolates the QS hierarchy is altered such that RhlR quorum sensing is independent of LasR regulation. Our analysis challenges the view that QS-silent P. aeruginosa is selected during the course of a chronic CF lung infection. Rather, some lasR sequence variants retain functionality, and many employ an alternate QS strategy involving RhlR. IMPORTANCE Chronic Pseudomonas aeruginosa infections, such as those in patients with the genetic disease cystic fibrosis, are notable in that mutants with defects in the quorum-sensing transcription factor LasR frequently arise. In laboratory strains of P. aeruginosa , quorum sensing activates transcription of dozens of genes, many of which encode virulence factors, such as secreted proteases and hydrogen cyanide synthases. In well-studied laboratory strains, LasR-null mutants have a quorum-sensing-deficient phenotype. Therefore, the presence of LasR variants in chronic infections has been interpreted to indicate that quorum-sensing-regulated products are not important for those infections. We report that some P. aeruginosa LasR variant clinical isolates are not LasR-null mutants, and others have uncoupled a second quorum-sensing system, the RhlR system, from LasR regulation. In these uncoupled isolates, RhlR independently activates at least some quorum-sensing-dependent genes. Our findings suggest that quorum sensing plays a role in chronic P. aeruginosa infections, despite the emergence of LasR coding variants.

1998 ◽  
Vol 66 (6) ◽  
pp. 2521-2528 ◽  
Author(s):  
Douglas G. Storey ◽  
Eva E. Ujack ◽  
Harvey R. Rabin ◽  
Ian Mitchell

ABSTRACT The role of Pseudomonas aeruginosa quorum-sensing systems in the lung infections associated with cystic fibrosis (CF) has not been examined. The purpose of this study was to determine if genes regulated by the LasR-LasI quorum-sensing system were coordinately regulated by the P. aeruginosa populations during the lung infections associated with CF. We also wanted to ascertain if there was a relationship between the expression of lasR, a transcriptional regulator, and some P. aeruginosa virulence factors during these infections. We extracted RNAs from the bacterial populations of 131 sputa taken from 23 CF patients. These RNAs were blotted and hybridized with probes to P. aeruginosa lasA,lasB, and toxA. The hybridization signals from each probe were ranked, and the rankings were analyzed by a Spearman rank correlation to determine if there was an association between the population transcript accumulations for the three genes. The correlations between the transcript accumulation patterns of pairs of the genes suggested that lasA, lasB, andtoxA might be coordinately regulated during CF lung infections. To determine if this coordinate regulation might be due to regulation by LasR, we probed RNAs, extracted from 84 sputa, with thelasR, lasA, lasB, toxA, and algD probes. Statistical analysis indicated thatlasR transcript accumulation correlated tolasA, lasB, toxA, andalgD transcript accumulations. These results indicated thatlasR may at least partially regulate or be coordinately regulated with lasA, lasB, toxA, and algD during the lung infections associated with CF. These results also suggested that the LasR-LasI quorum-sensing system may control the expression of at least some virulence factors in the lungs of patients with CF.


2020 ◽  
Author(s):  
Madeline Mei ◽  
Jacob Thomas ◽  
Stephen P. Diggle

AbstractBacteriocins are proteinaceous antimicrobials produced by bacteria which are active against other strains of the same species. R-type pyocins are phage tail-like bacteriocins produced by Pseudomonas aeruginosa. Due to their anti-pseudomonal activity, R-pyocins have potential as therapeutics in infection. P. aeruginosa is a Gram-negative opportunistic pathogen and is particularly problematic for individuals with cystic fibrosis (CF). P. aeruginosa from CF lung infections develop increasing resistance to antibiotics, making new treatment approaches essential. P. aeruginosa populations become phenotypically and genotypically diverse during infection, however little is known of the efficacy of R-pyocins against heterogeneous populations. R-pyocins vary by subtype (R1-R5), distinguished by binding to different residues on the lipopolysaccharide (LPS). Each type varies in killing spectrum, and each strain produces only one R-type. To evaluate the prevalence of different R-types, we screened P. aeruginosa strains from the International Pseudomonas Consortium Database (IPCD) and from our biobank of CF strains. We found that (i) R1-types were the most prevalent R-type among strains from respiratory sources and (ii) isolates collected from the same patient have the same R-type. We then assessed the impact of diversity on R-pyocin susceptibility and found a heterogenous response to R-pyocins within populations, likely due to differences in the LPS core. Our work reveals that heterogeneous populations of microbes exhibit variable susceptibility to R-pyocins and highlights that there is likely heterogeneity in response to other types of LPS-binding antimicrobials, including phage.ImportanceR-pyocins have potential as alternative therapeutics against Pseudomonas aeruginosa in chronic infection, however little is known about the efficacy of R-pyocins in heterogeneous bacterial populations. P. aeruginosa is known to become resistant to multiple antibiotics, as well as evolve phenotypic and genotypic diversity over time; thus it is particularly difficult to eradicate in chronic cystic fibrosis (CF) lung infections. In this study, we found that P. aeruginosa populations from CF lungs maintain the same R-pyocin genotype but exhibit heterogeneity in susceptibility to R-pyocins from other strains. Our findings suggest there is likely heterogeneity in response to other types of LPS-binding antimicrobials, such as phage, highlighting the necessity of further studying the potential of LPS-binding antimicrobial particles as alternative therapies in chronic infections.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Christopher J. Jones ◽  
Daniel J. Wozniak

ABSTRACT Despite years of research and clinical advances, chronic pulmonary infections with mucoid Pseudomonas aeruginosa remain the primary concern for cystic fibrosis patients. Much of the research on these strains has focused on the contributions of the polysaccharide alginate; however, it is becoming evident that the neutral polysaccharide Psl also contributes to biofilm formation and the maintenance of chronic infections. Here, we demonstrate that Psl produced by mucoid strains has significant roles in biofilm structure and evasion of immune effectors. Though mucoid strains produce less Psl than nonmucoid strains, the Psl that is produced is functional, since it mediates adhesion to human airway cells and epithelial cell death. Additionally, Psl protects mucoid bacteria from opsonization and killing by complement components in human serum. Psl production by mucoid strains stimulates a proinflammatory response in the murine lung, leading to reduced colonization. To determine the relevance of these data to clinical infections, we tested Psl production and biofilm formation of a panel of mucoid clinical isolates. We demonstrated three classes of mucoid isolates, those that produce Psl and form robust biofilms, those that did not produce Psl and have a poor biofilm phenotype, and exopolysaccharide (EPS) redundant strains. Collectively, these experimental results demonstrate that Psl contributes to the biofilm formation and immune evasion of many mucoid strains. This is a novel role for Psl in the establishment and maintenance of chronic pulmonary infections by mucoid strains. IMPORTANCE Cystic fibrosis patients are engaged in an ongoing battle against chronic lung infections by the bacterium Pseudomonas aeruginosa. One key factor contributing to the maintenance of chronic infections is the conversion to a mucoid phenotype, where the bacteria produce copious amounts of the polysaccharide alginate. Once the bacteria become mucoid, existing treatments are poorly effective. We proposed that mucoid bacteria produce an additional polysaccharide, Psl, which is important for their establishment and maintenance of chronic infections. This work demonstrates that Psl enhances attachment of mucoid bacteria to lung surfaces and leads to inflammation and damage in the lung. Additionally, we find that 50% of mucoid bacteria isolated from patients with chronic infections rely on Psl for the structure of their biofilm communities, suggesting that treatments against Psl should be investigated to enhance the success of current therapies. IMPORTANCE Cystic fibrosis patients are engaged in an ongoing battle against chronic lung infections by the bacterium Pseudomonas aeruginosa. One key factor contributing to the maintenance of chronic infections is the conversion to a mucoid phenotype, where the bacteria produce copious amounts of the polysaccharide alginate. Once the bacteria become mucoid, existing treatments are poorly effective. We proposed that mucoid bacteria produce an additional polysaccharide, Psl, which is important for their establishment and maintenance of chronic infections. This work demonstrates that Psl enhances attachment of mucoid bacteria to lung surfaces and leads to inflammation and damage in the lung. Additionally, we find that 50% of mucoid bacteria isolated from patients with chronic infections rely on Psl for the structure of their biofilm communities, suggesting that treatments against Psl should be investigated to enhance the success of current therapies.


2013 ◽  
Vol 12 ◽  
pp. S92
Author(s):  
A. Genevois ◽  
A. Furiga Chusseau ◽  
H. Belkhelfa ◽  
B. Lajoie ◽  
L. Haddioui ◽  
...  

Author(s):  
Rhea G. Abisado ◽  
John H. Kimbrough ◽  
Brielle M. McKee ◽  
Vaughn D. Craddock ◽  
Nicole E. Smalley ◽  
...  

The Pseudomonas aeruginosa LasR-I quorum-sensing system regulates secreted proteases that can be exploited by cheaters, such as quorum sensing receptor-defective (lasR) mutants. lasR mutants emerge in populations growing on casein as a sole source of carbon and energy. These mutants are exploitative cheaters because they avoid the substantial cost of engaging in quorum sensing. Previous studies showed that quorum sensing increases resistance to some antibiotics, such as tobramycin. Here, we show that tobramycin suppressed the emergence of lasR mutants in casein-passaged populations. Several mutations accumulated in those populations indicating evidence of antibiotic adaptation. We found that mutations in one gene, ptsP, increased antibiotic resistance and also pleiotropically increased production of a quorum sensing-controlled phenazine, pyocyanin. When passaged on casein, ptsP mutants suppressed cheaters in a manner that was tobramycin independent. We found the mechanism of cheater suppression in ptsP mutants relied on pyocyanin, which acts as a policing toxin by selectively blocking growth of cheaters. Thus, tobramycin suppresses lasR mutants through two mechanisms: first, through direct effects on cheaters and second, by selecting mutations in ptsP that suppressed cheating in a tobramycin-independent manner. This work demonstrates how adaptive mutations can alter the dynamics of cooperator-cheater relationships, which might be important for populations adapting to antibiotics during interspecies competition or infections. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa is a model for understanding quorum sensing, a type of cell-cell signaling important for cooperation. Quorum sensing controls production of cooperative goods, such as exoenzymes, which are vulnerable to cheating by quorum sensing-defective mutants. Because uncontrolled cheating can ultimately cause a population to collapse, much focus has been on understanding how P. aeruginosa can control cheaters. We show that an antibiotic, tobramycin, can suppress cheaters in cooperating P. aeruginosa populations. Tobramycin suppresses cheaters directly because the cheaters are more susceptible to tobramycin than cooperators. Tobramycin also selects for mutations in a gene, ptsP, that suppresses cheaters independent of tobramycin through pleiotropic regulation of a policing toxin, pyocyanin. This work supports the idea that adaptation to antibiotics can have unexpected effects on the evolution of quorum sensing and has implications for understanding how cooperation evolves in dynamic bacterial communities.


2021 ◽  
Author(s):  
Kathleen O’Connor ◽  
Conan Y. Zhao ◽  
Stephen P. Diggle

AbstractPseudomonas aeruginosa uses quorum sensing (QS) to coordinate the expression of multiple genes necessary for establishing and maintaining infection. lasR QS mutations have been shown to frequently arise in cystic fibrosis (CF) lung infections, however, there has been far less emphasis on determining whether QS system mutations arise across other environments. To test this, we utilized 852 publicly available sequenced P. aeruginosa genomes from the Pseudomonas International Consortium Database (IPCD) to study P. aeruginosa QS mutational signatures. We found that across all isolates, LasR is the most variable protein sequence compared to other QS proteins. In order to study isolates by source, we focused on a subset of 654 isolates collected from CF, wounds, and non-infection environmental isolates, where we could clearly identify their source. Using this sub-set analysis, we found that LasR mutations are not specific to CF lungs, but are common across all environments. We then used amino acid length as a proxy for observing loss of function in LasR proteins among the strains. We found that truncated LasR proteins are more abundant in P. aeruginosa strains isolated from human infection than the environment. Overall, our findings suggest that the evolution of lasR QS mutations in P. aeruginosa are common and not limited to infection environments.ImportancePseudomonas aeruginosa is an opportunistic pathogen which is often isolated from infection and environmental sources. P. aeruginosa uses quorum sensing (QS) to establish and adapt to infection environments. QS in P. aeruginosa is controlled by a complex hierarchical gene network in which the transcriptional regulator LasR has traditionally been thought to play a major controlling role. Despite this, lasR mutants are frequently isolated from chronic infection sites including the cystic fibrosis lung. Using an online P. aeruginosa strain database, we determined the frequency of mutation in key QS genes in multiple infection and non-infection environments and found that mutations and truncations in the lasR gene is more common than in other QS genes. Further, we found that lasR mutants are common in both infection and environmental strains. These findings further our understanding of QS in P. aeruginosa and have implications for the development of future therapies designed to inhibit QS.


2009 ◽  
Vol 77 (12) ◽  
pp. 5631-5639 ◽  
Author(s):  
Cara N. Wilder ◽  
Gopal Allada ◽  
Martin Schuster

ABSTRACT In the opportunistic pathogen Pseudomonas aeruginosa, acyl-homoserine lactone (acyl-HSL) quorum sensing (QS) regulates biofilm formation and expression of many extracellular virulence factors. Curiously, QS-deficient variants, often carrying mutations in the central QS regulator LasR, are frequently isolated from infections, particularly from cystic fibrosis (CF) lung infections. Very little is known about the proportion and diversity of these QS variants in individual infections. Such information is desirable to better understand the selective forces that drive the evolution of QS phenotypes, including social cheating and innate (nonsocial) benefits. To obtain insight into the instantaneous within-patient diversity of QS, we assayed a panel of 135 concurrent P. aeruginosa isolates from eight different adult CF patients (9 to 20 isolates per patient) for various QS-controlled phenotypes. Most patients contained complex mixtures of QS-proficient and -deficient isolates. Among all patients, deficiency in individual phenotypes ranged from 0 to about 90%. Acyl-HSL, sequencing, and complementation analyses of variants with global loss-of-function phenotypes revealed dependency upon the central QS circuitry genes lasR, lasI, and rhlI. Deficient and proficient isolates were clonally related, implying evolution from a common ancestor in vivo. Our results show that the diversity of QS types is high within and among patients, suggesting diverse selection pressures in the CF lung. A single selective mechanism, be it of a social or nonsocial nature, is unlikely to account for such heterogeneity. The observed diversity also shows that conclusions about the properties of P. aeruginosa QS populations in individual CF infections cannot be drawn from the characterization of one or a few selected isolates.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Trenton J. Davis ◽  
Ava V. Karanjia ◽  
Charity N. Bhebhe ◽  
Sarah B. West ◽  
Matthew Richardson ◽  
...  

ABSTRACT Pseudomonas aeruginosa chronic lung infections in individuals with cystic fibrosis (CF) significantly reduce quality of life and increase morbidity and mortality. Tracking these infections is critical for monitoring patient health and informing treatments. We are working toward the development of novel breath-based biomarkers to track chronic P. aeruginosa lung infections in situ. Using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC–TOF-MS), we characterized the in vitro volatile metabolomes (“volatilomes”) of 81 P. aeruginosa isolates collected from 17 CF patients over at least a 5-year period of their chronic lung infections. We detected 539 volatiles produced by the P. aeruginosa isolates, 69 of which were core volatiles that were highly conserved. We found that each early infection isolate has a unique volatilome, and as infection progresses, the volatilomes of isolates from the same patient become increasingly dissimilar, to the point that these intrapatient isolates are no more similar to one another than to isolates from other patients. We observed that the size and chemical diversity of P. aeruginosa volatilomes do not change over the course of chronic infections; however, the relative abundances of core hydrocarbons, alcohols, and aldehydes do change and are correlated with changes in phenotypes associated with chronic infections. This study indicates that it may be feasible to track P. aeruginosa chronic lung infections by measuring changes to the infection volatilome and lays the groundwork for exploring the translatability of this approach to direct measurement using patient breath. IMPORTANCE Pseudomonas aeruginosa is a leading cause of chronic lung infections in cystic fibrosis (CF), which are correlated with lung function decline. Significant clinical efforts are therefore aimed at detecting infections and tracking them for phenotypic changes, such as mucoidy and antibiotic resistance. Both the detection and tracking of lung infections rely on sputum cultures, but due to improvements in CF therapies, sputum production is declining, although risks for lung infections persist. Therefore, we are working toward the development of breath-based diagnostics for CF lung infections. In this study, we characterized of the volatile metabolomes of 81 P. aeruginosa clinical isolates collected from 17 CF patients over a duration of at least 5 years of a chronic lung infection. We found that the volatilome of P. aeruginosa adapts over time and is correlated with infection phenotype changes, suggesting that it may be possible to track chronic CF lung infections with a breath test.


2017 ◽  
Vol 63 (12) ◽  
pp. 929-938 ◽  
Author(s):  
Manu Singh ◽  
Yvonne C.W. Yau ◽  
Shirley Wang ◽  
Valerie Waters ◽  
Ayush Kumar

In this study, we analyzed 15 multidrug-resistant cystic fibrosis isolates of Pseudomonas aeruginosa from chronic lung infections for expression of 4 different multidrug efflux systems (MexAB–OprM, MexCD–OprJ, MexEF–OprN, and MexXY), using quantitative reverse transcriptase PCR. Overexpression of MexXY pump was observed in all of the isolates tested. Analysis of regulatory genes that control the expression of these 4 efflux pumps revealed a number of previously uncharacterized mutations. Our work shows that MexXY pump overexpression is common in cystic fibrosis isolates and could be contributing to their reduced aminoglycoside susceptibility. Further, we also identified novel mutations in the regulatory genes of the 4 abovementioned Resistance–Nodulation–Division superfamily pumps that may be involved in the overexpression of these pumps.


2016 ◽  
Author(s):  
Erik van Tilburg Bernardes ◽  
Laetitia Charron-Mazenod ◽  
David Reading ◽  
Shauna L. Reckseidler-Zenteno ◽  
Shawn Lewenza

AbstractBiofilm formation is a universal bacterial strategy for long-term survival in nature and during infections. Biofilms are dense microbial communities enmeshed within a polymeric extracellular matrix that protects bacteria from antibiotic exposure and the immune system and thus contribute to chronic infections.Pseudomonas aeruginosais an archetypal biofilm-forming organism that utilizes a biofilm growth strategy to cause chronic lung infections in Cystic Fibrosis (CF) patients. The extracellular matrix ofP. aeruginosabiofilms is comprised mainly of exopolysaccharides (EPS) and DNA. Both mucoid and non-mucoid isolates ofP. aeruginosaproduces the Pel and Psl EPS, each of which have important roles in antibiotic resistance, biofilm formation and immune evasion. Given the central importance of the Pel and Psl EPS in biofilm structure, they are attractive targets for novel anti-infective compounds. In this study we used a high throughput gene expression screen to identify compounds that repress expression ofpelandpslgenes as measured by transcriptionalluxfusions. Testing of thepel/pslrepressors demonstrated an antibiofilm activity against microplate and flow chamber biofilms formed by wild type and hyperbiofilm forming strains. To determine the potential role of EPS in virulence, mutants inpel/pslwere shown to have reduced virulence in the feeding behavior and slow killing virulence assays inCaenorhabditis elegans. The antibiofilm molecules also reducedP. aeruginosaPAO1 virulence in the nematode slow killing model. Importantly, the combination of antibiotics and antibiofilm compounds were synergistic in killingP. aeruginosabiofilms. These small molecules represent a novel anti-infective strategy for the possible treatment of chronicP. aeruginosainfections.Author summaryBacteria use the strategy of growing as a biofilm to promote long-term survival and therefore to cause chronic infections. One of the best examples isPseudomonas aeruginosaand the chronic lung infections in individuals with Cystic Fibrosis (CF). Biofilms are generally a dense community of bacteria enmeshed in an extracellular matrix that protects bacteria from numerous environmental stresses, including antibiotics and the immune system. In this study we developed an approach to identifyP. aeruginosabiofilm inhibitors by repressing the production of the matrix exopolysaccharide (EPS) polymers. Bacteria treated with compounds and then fed to the nematode also had showed reduced virulence by promoting nematode survival. To tackle the problem of biofilm tolerance of antibiotics, the compounds identified here also had the beneficial property of increasing the biofilm sensitivity to different classes of antibiotics. The compounds disarm bacteria but they do not kill or limit growth like antibiotics. We provide further support that disarmingP. aeruginosamay be a critical anti-infective strategy that limits the development of antibiotic resistance, and provides a new way for treating chronic infections.


Sign in / Sign up

Export Citation Format

Share Document