scholarly journals Prevalence and impact of oprD mutations in Pseudomonas aeruginosa strains in cystic fibrosis

2019 ◽  
Author(s):  
Laura J. Sherrard ◽  
Bryan A. Wee ◽  
Christine Duplancic ◽  
Kay A. Ramsay ◽  
Keyur A. Dave ◽  
...  

ABSTRACTDefective OprD porins contribute to carbapenem resistance and may be important in Pseudomonas aeruginosa adaptation to cystic fibrosis airways. It is unclear whether oprD mutations are fixed in populations of shared strains that are transmitted between patients or whether novel variants arise during infection. We investigated oprD sequences and antimicrobial resistance of two common Australian shared strains, constructed P. aeruginosa mutants with the most common oprD allelic variants and compared characteristics between patients with or without evidence of infection with strains harbouring these variants. Our data show that three independently acquired nonsense mutations arising from a 1-base pair substitution are fixed in strain sub-lineages. These nonsense mutations are likely to contribute to reduced carbapenem susceptibility in the sub-lineages without compromising in vitro fitness. Not only was lung function worse among patients infected with strains harbouring the nonsense mutations than those without, but they also had an increased hazard rate of lung transplantation/death. Our findings further highlight that understanding adaptive changes may help to distinguish patients with greater adverse outcomes despite infection with the same strain.

2016 ◽  
Vol 114 (1) ◽  
pp. 136-141 ◽  
Author(s):  
Becca A. Flitter ◽  
Kelli L. Hvorecny ◽  
Emiko Ono ◽  
Taylor Eddens ◽  
Jun Yang ◽  
...  

Recurrent Pseudomonas aeruginosa infections coupled with robust, damaging neutrophilic inflammation characterize the chronic lung disease cystic fibrosis (CF). The proresolving lipid mediator, 15-epi lipoxin A4 (15-epi LXA4), plays a critical role in limiting neutrophil activation and tissue inflammation, thus promoting the return to tissue homeostasis. Here, we show that a secreted P. aeruginosa epoxide hydrolase, cystic fibrosis transmembrane conductance regulator inhibitory factor (Cif), can disrupt 15-epi LXA4 transcellular biosynthesis and function. In the airway, 15-epi LXA4 production is stimulated by the epithelial-derived eicosanoid 14,15-epoxyeicosatrienoic acid (14,15-EET). Cif sabotages the production of 15-epi LXA4 by rapidly hydrolyzing 14,15-EET into its cognate diol, eliminating a proresolving signal that potently suppresses IL-8–driven neutrophil transepithelial migration in vitro. Retrospective analyses of samples from patients with CF supported the translational relevance of these preclinical findings. Elevated levels of Cif in bronchoalveolar lavage fluid were correlated with lower levels of 15-epi LXA4, increased IL-8 concentrations, and impaired lung function. Together, these findings provide structural, biochemical, and immunological evidence that the bacterial epoxide hydrolase Cif disrupts resolution pathways during bacterial lung infections. The data also suggest that Cif contributes to sustained pulmonary inflammation and associated loss of lung function in patients with CF.


2019 ◽  
Vol 75 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Odel Soren ◽  
Ardeshir Rineh ◽  
Diogo G Silva ◽  
Yuming Cai ◽  
Robert P Howlin ◽  
...  

Abstract Objectives The cephalosporin nitric oxide (NO)-donor prodrug DEA-C3D (‘DiEthylAmin-Cephalosporin-3′-Diazeniumdiolate’) has been shown to initiate the dispersal of biofilms formed by the Pseudomonas aeruginosa laboratory strain PAO1. In this study, we investigated whether DEA-C3D disperses biofilms formed by clinical cystic fibrosis (CF) isolates of P. aeruginosa and its effect in combination with two antipseudomonal antibiotics, tobramycin and colistin, in vitro. Methods β-Lactamase-triggered release of NO from DEA-C3D was confirmed using a gas-phase chemiluminescence detector. MICs for P. aeruginosa clinical isolates were determined using the broth microdilution method. A crystal violet staining technique and confocal laser scanning microscopy were used to evaluate the effects of DEA-C3D on P. aeruginosa biofilms alone and in combination with tobramycin and colistin. Results DEA-C3D was confirmed to selectively release NO in response to contact with bacterial β-lactamase. Despite lacking direct, cephalosporin/β-lactam-based antibacterial activity, DEA-C3D was able to disperse biofilms formed by three P. aeruginosa clinical isolates. Confocal microscopy revealed that DEA-C3D in combination with tobramycin produces similar reductions in biofilm to DEA-C3D alone, whereas the combination with colistin causes near complete eradication of P. aeruginosa biofilms in vitro. Conclusions DEA-C3D is effective in dispersing biofilms formed by multiple clinical isolates of P. aeruginosa and could hold promise as a new adjunctive therapy to patients with CF.


2021 ◽  
Vol 9 (3) ◽  
pp. 478
Author(s):  
Ersilia Vita Fiscarelli ◽  
Martina Rossitto ◽  
Paola Rosati ◽  
Nour Essa ◽  
Valentina Crocetta ◽  
...  

As disease worsens in patients with cystic fibrosis (CF), Pseudomonas aeruginosa (PA) colonizes the lungs, causing pulmonary failure and mortality. Progressively, PA forms typical biofilms, and antibiotic treatments determine multidrug-resistant (MDR) PA strains. To advance new therapies against MDR PA, research has reappraised bacteriophages (phages), viruses naturally infecting bacteria. Because few in vitro studies have tested phages on CF PA biofilms, general reliability remains unclear. This study aimed to test in vitro newly isolated environmental phage activity against PA isolates from patients with CF at Bambino Gesù Children’s Hospital (OBG), Rome, Italy. After testing in vitro phage activities, we combined phages with amikacin, meropenem, and tobramycin against CF PA pre-formed biofilms. We also investigated new emerging morphotypes and bacterial regrowth. We obtained 22 newly isolated phages from various environments, including OBG. In about 94% of 32 CF PA isolates tested, these phages showed in vitro PA lysis. Despite poor efficacy against chronic CF PA, five selected-lytic-phages (Φ4_ZP1, Φ9_ZP2, Φ14_OBG, Φ17_OBG, and Φ19_OBG) showed wide host activity. The Φ4_ZP1-meropenem and Φ14_OBG-tobramycin combinations significantly reduced CF PA biofilms (p < 0.001). To advance potential combined phage-antibiotic therapy, we envisage further in vitro test combinations with newly isolated phages, including those from hospital environments, against CF PA biofilms from early and chronic infections.


Author(s):  
María Díez-Aguilar ◽  
Marta Hernández-García ◽  
María-Isabel Morosini ◽  
Ad Fluit ◽  
Michael M Tunney ◽  
...  

Abstract Background Murepavadin, a novel peptidomimetic antibiotic, is being developed as an inhalation therapy for treatment of Pseudomonas aeruginosa respiratory infection in people with cystic fibrosis (CF). It blocks the activity of the LptD protein in P. aeruginosa causing outer membrane alterations. Objectives To determine the in vitro activity of murepavadin against CF P. aeruginosa isolates and to investigate potential mechanisms of resistance. Methods MIC values were determined by both broth microdilution and agar dilution and results compared. The effect of artificial sputum and lung surfactant on in vitro activity was also measured. Spontaneous mutation frequency was estimated. Bactericidal activity was investigated using time–kill assays. Resistant mutants were studied by WGS. Results The murepavadin MIC50 was 0.125 versus 4 mg/L and the MIC90 was 2 versus 32 mg/L by broth microdilution and agar dilution, respectively. Essential agreement was &gt;90% when determining in vitro activity with artificial sputum or lung surfactant. It was bactericidal at a concentration of 32 mg/L against 95.4% of the strains within 1–5 h. Murepavadin MICs were 2–9 two-fold dilutions higher for the mutant derivatives (0.5 to &gt;16 mg/L) than for the parental strains. Second-step mutants were obtained for the PAO mutS reference strain with an 8×MIC increase. WGS showed mutations in genes involved in LPS biosynthesis (lpxL1, lpxL2, bamA2, lptD, lpxT and msbA). Conclusions Murepavadin characteristics, such as its specific activity against P. aeruginosa, its unique mechanism of action and its strong antimicrobial activity, encourage the further clinical evaluation of this drug.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Rasmus Lykke Marvig ◽  
Søren Damkiær ◽  
S. M. Hossein Khademi ◽  
Trine M. Markussen ◽  
Søren Molin ◽  
...  

ABSTRACTPseudomonas aeruginosaairway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist,P. aeruginosadepends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and thePseudomonasheme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation ofP. aeruginosato the host environment. Here we investigated the within-host evolution of the transmissibleP. aeruginosaDK2 lineage. We found positive selection for promoter mutations leading to increased expression of thephusystem. By mimicking conditions of the CF airwaysin vitro, we experimentally demonstrate that increased expression ofphuRconfers a growth advantage in the presence of hemoglobin, thus suggesting thatP. aeruginosaevolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additionalP. aeruginosalineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages,phuRpromoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment ofP. aeruginosainfections in CF patients.IMPORTANCEMost bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogenPseudomonas aeruginosato cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution ofP. aeruginosa, and we found evidence thatP. aeruginosaduring long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections.


1999 ◽  
Vol 43 (12) ◽  
pp. 2877-2880 ◽  
Author(s):  
Ribhi M. Shawar ◽  
David L. MacLeod ◽  
Richard L. Garber ◽  
Jane L. Burns ◽  
Jenny R. Stapp ◽  
...  

ABSTRACT The in vitro activity of tobramycin was compared with those of six other antimicrobial agents against 1,240 Pseudomonas aeruginosa isolates collected from 508 patients with cystic fibrosis during pretreatment visits as part of the phase III clinical trials of tobramycin solution for inhalation. The tobramycin MIC at which 50% of isolates are inhibited (MIC50) and MIC90 were 1 and 8 μg/ml, respectively. Tobramycin was the most active drug tested and also showed good activity against isolates resistant to multiple antibiotics. The isolates were less frequently resistant to tobramycin (5.4%) than to ceftazidime (11.1%), aztreonam (11.9%), amikacin (13.1%), ticarcillin (16.7%), gentamicin (19.3%), or ciprofloxacin (20.7%). For all antibiotics tested, nonmucoid isolates were more resistant than mucoid isolates. Of 56 isolates for which the tobramycin MIC was ≥16 μg/ml and that were investigated for resistance mechanisms, only 7 (12.5%) were shown to possess known aminoglycoside-modifying enzymes; the remaining were presumably resistant by an incompletely understood mechanism often referred to as “impermeability.”


2021 ◽  
Vol 22 (21) ◽  
pp. 12050
Author(s):  
Cynthia B. Silveira ◽  
Ana G. Cobián-Güemes ◽  
Carla Uranga ◽  
Jonathon L. Baker ◽  
Anna Edlund ◽  
...  

Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacteria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these bacteria facilitate the colonization and growth of CF pathogens like Pseudomonas aeruginosa. Here, a multi-omics study informed the control of putative anaerobic keystone species during a transition in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence data with epifluorescence microscopy showed that during periods of rapid lung function loss, the patient’s lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging to Streptococcus, Veillonella, and Prevotella genera. Untargeted metabolomics and community cultures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric acid, and acetic acid. P. aeruginosa utilized these fermentation products for growth, as indicated by quantitative transcriptomics data. Transcription levels of P. aeruginosa genes for the utilization of fermentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of fermentation products. Clindamycin also lowered the abundance and transcription of P. aeruginosa, even though this patient’s strain was resistant to this antibiotic. The treatment stabilized the patient’s lung function and improved respiratory health for two months, lengthening by a factor of four the between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of P. aeruginosa by disrupting the cross-feeding of fermentation products. This case study supports the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Personalized multi-omics may become a viable approach for routine clinical diagnostics in the future, providing critical information to inform treatment decisions.


2020 ◽  
Author(s):  
Paul Briaud ◽  
Sylvère Bastien ◽  
Laura Camus ◽  
Marie Boyadjian ◽  
Philippe Reix ◽  
...  

AbstractStaphylococcus aureus (SA) is the major colonizer of the lung of cystic fibrosis (CF) patient during childhood and adolescence. As patient aged, the prevalence of SA decreases and Pseudomonas aeruginosa (PA) becomes the major pathogen infecting adult lungs. Nonetheless, SA remains significant and patients harbouring both SA and PA are frequently found in worldwide cohort. Impact of coinfection remains controversial. Furthermore, co-infecting isolates may compete or coexist. The aim of this study was to analyse if co-infection and coexistence of SA and PA could lead to worse clinical outcomes. The clinical and bacteriological data of 212 Lyon CF patients were collected retrospectively, and patients were ranked into three groups, SA only (n=112), PA only (n=48) or SA plus PA (n=52). In addition, SA and PA isolates from co-infecting patients were tested in vitro to define their interaction profile. Sixty five percent (n=34) of SA/PA pairs coexist. Using univariate and multivariate analysis, we confirm that SA patients have a clinical condition less severe than others, and PA induce a poor outcome independently of the presence of SA. FEV1 is lower in patients infected by competition strain pairs than in those infected by coexisting strain pairs compared to SA mono-infection. Coexistence between SA and PA may be an important step in the natural history of lung bacterial colonization within CF patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Licia Totani ◽  
Concetta Amore ◽  
Antonio Piccoli ◽  
Giuseppe Dell’Elba ◽  
Angelo Di Santo ◽  
...  

Neutrophilic inflammation is a key determinant of cystic fibrosis (CF) lung disease. Neutrophil-derived free DNA, released in the form of extracellular traps (NETs), significantly correlates with impaired lung function in patients with CF, underlying their pathogenetic role in CF lung disease. Thus, specific approaches to control NETosis of neutrophils migrated into the lungs may be clinically relevant in CF. We investigated the efficacy of phosphodiesterase (PDE) type-4 inhibitors, in vitro, on NET release by neutrophils from healthy volunteers and individuals with CF, and in vivo, on NET accumulation and lung inflammation in mice infected with Pseudomonas aeruginosa. PDE4 blockade curbed endotoxin-induced NET production and preserved cellular integrity and apoptosis in neutrophils, from healthy subjects and patients with CF, challenged with endotoxin, in vitro. The pharmacological effects of PDE4 inhibitors were significantly more evident on CF neutrophils. In a mouse model of Pseudomonas aeruginosa chronic infection, aerosol treatment with roflumilast, a selective PDE4 inhibitor, gave a significant reduction in free DNA in the BALF. This was accompanied by reduced citrullination of histone H3 in neutrophils migrated into the airways. Roflumilast-treated mice showed a significant improvement in weight recovery. Our study provides the first evidence that PDE4 blockade controls NETosis in vitro and in vivo, in CF-relevant models. Since selective PDE4 inhibitors have been recently approved for the treatment of COPD and psoriasis, our present results encourage clinical trials to test the efficacy of this class of drugs in CF.


Sign in / Sign up

Export Citation Format

Share Document