scholarly journals Cancer Treatment and Nutritional Deficiencies

Author(s):  
Janet Schloss
Author(s):  
F. G. Zaki ◽  
J. A. Greenlee ◽  
C. H. Keysser

Nuclear inclusion bodies seen in human liver cells may appear in light microscopy as deposits of fat or glycogen resulting from various diseases such as diabetes, hepatitis, cholestasis or glycogen storage disease. These deposits have been also encountered in experimental liver injury and in our animals subjected to nutritional deficiencies, drug intoxication and hepatocarcinogens. Sometimes these deposits fail to demonstrate the presence of fat or glycogen and show PAS negative reaction. Such deposits are considered as viral products.Electron microscopic studies of these nuclei revealed that such inclusion bodies were not products of the nucleus per se but were mere segments of endoplasmic reticulum trapped inside invaginating nuclei (Fig. 1-3).


2004 ◽  
Vol 171 (4S) ◽  
pp. 284-284
Author(s):  
Yi Lu ◽  
Jun Zhang ◽  
Ben Beheshti ◽  
Ximing J. Yang ◽  
Syamal K. Bhattacharya ◽  
...  

2008 ◽  
Vol 78 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Fan ◽  
Jiang ◽  
Zhang ◽  
Bai

In efforts to identify naturally occurring compounds that act as protective agents, resveratrol, a phytoalexin existing in wine, has attracted much interest because of its diverse pharmacological characteristics. Considering that apoptosis induction is the most potent defense approach for cancer treatment, we have tried to summarize our present understanding of apoptosis induction by resveratrol based on the two major apoptosis pathways.


2012 ◽  
Vol 82 (3) ◽  
pp. 177-186 ◽  
Author(s):  
Violeta Fajardo ◽  
Gregorio Varela-Moreiras

In the past, food fortification along with nutritional education and the decrease in food costs relative to income have proven successful in eliminating common nutritional deficiencies. These deficiencies such as goiter, rickets, beriberi, and pellagra have been replaced with an entirely new set of “emergent deficiencies” that were not previously considered a problem [e.g., folate and neural tube defects (NTDs)]. In addition, the different nutrition surveys in so-called affluent countries have identified “shortfalls” of nutrients specific to various age groups and/or physiological status. Complex, multiple-etiology diseases, such as atherosclerosis, diabetes, cancer, and obesity have emerged. Food fortification has proven an effective tool for tackling nutritional deficiencies in populations; but today a more reasonable approach is to use food fortification as a means to support but not replace dietary improvement strategies (i. e. nutritional education campaigns). Folic acid (FA) is a potential relevant factor in the prevention of a number of pathologies. The evidence linking FA to NTD prevention led to the introduction of public health strategies to increase folate intakes: pharmacological supplementation, mandatory or voluntary fortification of staple foods with FA, and the advice to increase the intake of folate-rich foods. It is quite contradictory to observe that, regardless of these findings, there is only limited information on food folate and FA content. Data in Food Composition Tables and Databases are scarce or incomplete. Fortification of staple foods with FA has added difficulty to this task. Globally, the decision to fortify products is left up to individual food manufacturers. Voluntary fortification is a common practice in many countries. Therefore, the “worldwide map of vitamin fortification” may be analyzed. It is important to examine if fortification today really answers to vitamin requirements at different ages and/or physiological states. The real impact of vitamin fortification on some key biomarkers is also discussed. An important question also to be addressed: how much is too much? It is becoming more evident that chronic excessive intakes may be harmful and a wide margin of safety seems to be a mandatory practice in dietary recommendations. Finally, the “risk/benefit” dilemma is also considered in the “new” FA-fortified world.


Sign in / Sign up

Export Citation Format

Share Document