scholarly journals Microfinite Element Modeling for Evaluating Polymer Scaffolds Architecture and their Mechanical Properties from microComputed Tomography

Author(s):  
Angel Alberich-Bayarri ◽  
Manuel Salmeron-Sanchez ◽  
M. Angeles ◽  
David Moratal

2009 ◽  
Vol 91B (1) ◽  
pp. 191-202 ◽  
Author(s):  
Angel Alberich-Bayarri ◽  
David Moratal ◽  
Jorge L. Escobar Ivirico ◽  
José C. Rodríguez Hernández ◽  
Ana Vallés-Lluch ◽  
...  


2007 ◽  
Vol 81B (2) ◽  
pp. 448-455 ◽  
Author(s):  
Raúl Brígido Diego ◽  
Jorge Más Estellés ◽  
José Antonio Sanz ◽  
José Manuel García-Aznar ◽  
Manuel Salmerón Sánchez


1996 ◽  
Vol 444 ◽  
Author(s):  
S. M. Myers ◽  
D. M. Follstaedt ◽  
J. A. Knapp ◽  
T. R. Christenson

AbstractDual ion implantation of titanium and carbon was shown to produce an amorphous surface layer in annealed bulk nickel, in electroformed Ni, and in electroformed Ni7 5Fe 2 5. Diamond-tip nanoindentation coupled with finite-element modeling quantified the elastic and plastic mechanical properties of the implanted region. The amorphized matrix, with a thickness of about 100 nm, has a yield stress of approximately 6 GP and an intrinsic hardness near 16 GPa, exceeding by an order of magnitude the corresponding values for annealed bulk Ni. Implications for micro-electromechanical systems are discussed.



1996 ◽  
Vol 438 ◽  
Author(s):  
J. A. Knapp ◽  
D. M. Follstaedt ◽  
J. C. Barbour ◽  
S. M. Myers ◽  
J. W. Ager ◽  
...  

AbstractWe present a methodology based on finite-element modeling of nanoindentation data to extract reliable and accurate mechanical properties from thin, hard films and surface-modified layers on softer substrates. The method deduces the yield stress, Young's modulus, and hardness from indentations as deep as 50% of the layer thickness.



2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Yann Zimmermann ◽  
Tanvir Mustafy ◽  
Isabelle Villemure

Abstract Microcomputed tomography (micro-CT) based finite element models (FEM) are efficient tools to assess bone mechanical properties. Although they have been developed for different animal models, there is still a lack of data for growing rat long bone models. This study aimed at developing and calibrating voxel-based FEMs using micro-CT scans and experimental data. Twenty-four tibiae were extracted from rats aged 28, 56, and 84 days old (d.o.) (n = 8/group), and their stiffness values were evaluated using three-point bending tests. Prior to testing, tibiae were scanned, reconstructed, and converted into FEM composed of heterogeneous bone properties based on pixel grayscales. Three element material laws (one per group) were calibrated using back-calculation process based on experimental bending data. Two additional specimens per group were used for model verification. The calibrated rigidity–density (E-ρ) relationships were different for each group: E28 = 10,320·ρash3.45; E56 = 43,620·ρash4.41; E84 = 20,090·ρash2.0. Obtained correlations between experimental and FEM stiffness values were 0.43, 0.10, and 0.66 with root-mean-square error (RMSE) of 14.4%, 17.4%, and 15.2% for 28, 56, and 84 d.o. groups, respectively. Prediction errors were less than 13.5% for 28 and 84 d.o. groups but reached 57.1% for the 56 d.o. group. Relationships between bone physical and mechanical properties were found to change during the growth, similarly to bending stiffness values, which increased with bone development. The reduced correlation observed for the 56 d.o. group may be related to the pubescent transition at that age group. These FE models will be useful for investigation of bone behavior in growing rats.



2018 ◽  
Vol 773 ◽  
pp. 3-9 ◽  
Author(s):  
Ilya A. Morozov ◽  
Anton Y. Beliaev ◽  
Roman I. Izyumov

Stiff coating on the phase-separated soft polyurethane substrate under the compression deformation is investigated by the finite element modeling (FEM). External strain leads to the wrinkling of layer surface, which is characterized by a set of wavelengths and amplitudes. The influence of the thickness and stiffness of the layer, elastic modulus of the substrate on the structural-mechanical properties of the deformed surface is studied. The results of the model are in good accordance with the experiment (plasma immersion ion impanation of nitrogen ions into the polyurethane substrate) and allowed to estimate the modulus of the coating and the deformation of the surface.



1999 ◽  
Vol 593 ◽  
Author(s):  
P.J. Wolff ◽  
B.N. Lucas ◽  
E.G. Herbert

ABSTRACTA commonly used technique to compute mechanical properties from indentation tests is the Oliver and Pharr method. Using dimensional analysis and finite element modeling, this paper investigates errors when the Oliver and Pharr method is used to compute thin film properties.



Sign in / Sign up

Export Citation Format

Share Document